Примеры вычисления энергии. Вычисление потенциальной энергии
Пользуясь работой, равной произведению сила на расстояние, мы легко можем подсчитать изменение потенциальной энергии. При поднятии груза прирост его потенциальной энергии равен весу, т. е. притяжению Земли, умноженному на высоту подъема. Если тело движется по наклонному пути, мы пользуемся также произведением вес на высоту подъема по вертикали. Земля не тянет груз вбок, так что боковое движение не требует совершения работы.
Если при движении колес по шероховатой дороге или подъеме по лестнице сказывается трение, то какая-то работа совершается и при горизонтальном движении; при этом энергия переходит в нагревание дороги, обода и ботинок. Поскольку эта теплота не запасается и не может быть использована на обратном пути, мы не можем считать ее потенциальной энергией. Поэтому при вычислении полезной потенциальной энергии, того запаса энергии, который можно использовать для движения механизмов, мы не учитываем горизонтального движения (нулевой уровень потенциальной энергии см. стр. 426).
Пример А. Вычисление прироста потенциальной энергии
1. Мешок с зерном весом 20 кГ поднят с пола на высоту 10 м
ПРИРОСТ ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ = ВЕС ∙ Δ ВЫСОТЫ = (20 кГ)∙(10) м = 200 кГм
Если мы хотим выразить этот прирост в «хороших» единицах, которыми нужно пользоваться во всех случаях, когда есть движение, то вес также необходимо выражать в таких «хороших» единицах, как ньютон. Таким образом,
ВЕС = ПРИТЯЖЕНИЕ ЗЕМЛЕЙ 20 кГ = (20 кГ)∙(9,8 ньютон/кГ) = (20)∙(9,8) ньютон = 196 ньютон.
ПРИРОСТ ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ = ВЕС ∙ Δ ВЫСОТЫ =
= (20)∙(9,8 ньютон)∙(10) м = 1960 ньютон∙м = 1960 дж.
2. Груз массой 20 кг поднят на высоту 10 м по кривому пути при помощи блоков и веревок.
Прирост потенциальной энергии силы тяжести по-прежнему составит (196 ньютон)∙(10 м). Это и есть та потенциальная энергия, которую потерял бы груз, если бы он упал вертикально на пол. Именно она и приобретается при поднятии груза на 10 м независимо от того, насколько груз продвинулся бы вбок. Проверим это на следующем простом примере.
Предположим, что груз втаскивается наверх по наклонной плоскости, причем на пути длиной 50 м он поднимается на высоту 10 м. В этом случае нам известна сила, с которой нужно тащить груз вдоль плоскости без трения. Она задается отношением
СИЛА F / ВЕС W = ВЫСОТА ПОДЪЕМА / ДЛИНА ПЛОСКОСТИ,
F/196 ньютон = 10/50, F = 196/5 = 39,2 ньютон
Но человек тянет груз с силой 196/5 ньютон вместо полных 196 и должен тащить его 50 м, а не 10 м (или если он стоит на вершине, то должен вытянуть 50 м веревки вместо 10). Следовательно, его затраты энергии, измеряемые произведением силы на расстояние, равны (196/5 ньютон)∙(10 м)=1960 ньютон∙м, т. е. такие же, как и прежде.
При наличии трения человек должен прикладывать большую силу, чем 39,2 ньютон, однако она не имеет ничего общего с приростом потенциальной энергии. Дополнительная сила используется для преодоления трения расходуется на теплоту, не увеличивая причем дополнительная энергия потенциальной энергии груза.
Фиг. 56
3. Растяжение пружины. В этом случае сила непрерывно возрастает. Нам необходимо брать подходящую среднюю силу. Лучше всего взять натяжение пружины в начале и в конце и усреднить эти значения.
Пусть человек, удерживающий пружину с напряжением 100 ньютон, растянул ее на 2 м, причем напряжение возросло до 500 ньютон, тогда
ПРИРОСТ ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ ПРУЖИНЫ = СРЕДНЯЯ СИЛА ∙ РАССТОЯНИЕ,
= [(100 ньютон + 500 ньютон)/2]∙2 м = 300∙2 ньютон∙м = 600 дж
Замечание о нулевом уровне потенциальной энергии
Прирост потенциальной энергии силы тяжести определяется произведением вес на высоту подъема. Чтобы вычислить полную потенциальную энергию силы тяжести предмета, мы должны знать его «полную высоту», а это, по-видимому, не имеет смысла. От чего отсчитывать эту высоту — от поверхности Земли, от ее центра, а может быть, от стола? Ответ: абсолютного нулевого уровня потенциальной энергии в обычных расчетах нет. К счастью, мы пользуемся только изменением потенциальной энергии, а поэтому можем выбирать любой удобный для нас нулевой уровень. Если мы возьмем на берегу камень и поднимем его на вершину утеса, то в качестве нулевого уровня можно взять уровень морского берега и приписать камню на берегу нулевую потенциальную энергию. Если мы сбросили камень с воздушного шара на Землю, то нулевым уровнем будет поверхность Земли. Если же бросить камень в колодец, то в качестве нулевого уровня лучше выбрать либо дно колодца, либо уровень Земли, и когда камень находится ниже уровня Земли, воспользоваться странной на первый взгляд отрицательной потенциальной энергией. Если мы ставим опыт над лабораторным столом, то в качестве нулевого уровня можно выбирать либо поверхность стола, либо пол. В последнем случае все высоты будут больше, но разность высот останется, конечно, той же самой.
Поднимая предмет все выше и выше, мы, очевидно, сообщаем ему все большую потенциальную энергию. Непосредственно над земной поверхностью каждый килограмм при подъеме на 1 м приобретает 9,8 дж, но когда мы поднимаем его на большую высоту, то должны учитывать изменение силы земного притяжения согласно закону обратных квадратов. На высоте 6000 км килограмм приобретает при подъеме на 1 м в 4 раза меньшую энергию, т. е. 2,45 дж. Из-за уменьшения земного притяжения потенциальная энергия тела на большой высоте возрастает все медленнее и медленнее. Используя закон обратных квадратов и интегральное исчисление, мы найдем, что на очень больших расстояниях (на «бесконечности», если угодно) потенциальная энергия приближается к пределу, который оказывается равным той энергии, которую имеет тело, поднятое на высоту радиуса Земли, при условии, что вес тела остается тем же, что и на поверхности.