Физика для любознательных. Том 2. Наука о Земле и - Страница 131


К оглавлению

131

1) Сообщите вашу «порцию» тепла 1 кг воды и замерьте повышение температуры.

2) Сообщите одну «порцию» 0,5 кг воды. Пламя едва ли «догадывается», сколько оно греет воды — 1 кг или 0,5 кг. Мы пытаемся рассматривать теплоту как некую невидимую субстанцию, проникающую в воду, и найти способ или схему измерения количества тепла, выделенного одной «порцией».



Фиг. 67. Опыт 1.


Правильный способ должен дать одинаковый ответ для обоих опытов. Разберите теперь три возможные схемы:

а) Повышение температуры. Допустима что повышение температуры — это единственная мера количества тепла. Удовлетворяет ли оно нашему требованию: одинаково ли оно для обоих приведенных опытов? Нет.

б) Количество нагреваемой воды тоже важно, так как в случае большего количества воды повышение температуры будет меньше. Попытайтесь сложить повышение температуры с массой воды. Пусть вам удалось найти формулу вроде

Δ ТЕМПЕРАТУРЫ ∙ 43 + МАССА ВОДЫ.

Справедлива ли эта формула для другой массы, скажем 2 кг?

в) Попытайтесь умножить массу воды на повышение температуры. Не придирайтесь к точности расчетов — они, конечно, очень грубы. Тепло легко утекает из любого прибора. В большинстве опытов экспериментаторы ведут отчаянную борьбу с потерями тепла в воздух и т. д., так что и в демонстрационном опыте и в вашем собственном вы можете рассчитывать лишь на грубое согласие.

Разнообразие экспериментов до нагреву успешно описывает предложенная выше схема (в), к тому же она согласуется с подходом к теплоте как энергии. Так что давайте примем ее и сформулируем правило.

Правило. Для измерения количества тепла назрейте им воду и помножьте

МАССА ВОДЫ ∙ ПОВЫШЕНИЕ ТЕМПЕРАТУРЫ.


Единицы количества тепла

Если масса воды измеряется в килограммах, а повышение температуры — в градусах Цельсия, то теплота получается в (кг воды)∙°С; мы называем эту единицу «килокалорией» («большой калорией»), или просто «Калорией»  (с большой буквы).

Итак, 1 килокалория — это количество тепла, необходимое для нагревания 1 кг воды на 1 °C. Если мы используем эти единицы теплоты, то наше прaвило кажется разумным. Например, «Сколько теплоты требуется для нагревания 3 кг воды на 5 °C?» Нагревание каждого килограмма на 1 °C требует 1 Кал (по определению). Нагревание 1 кг на 5 °C требует 5 Кал. Нагревание же 3 кг на 5 °C требует в 3 раза больше, или 3x5=15 Кал. Итак, нагревание 3 кг на 5 °C требует 15 «единиц», каждая из которых нагревает 1 кг на 1 °C, или 15 Кал.

В общем случае нагревание М кг воды на Δt градусов требует М∙Δt Кал. Это рассуждение молчаливо предполагает аддитивность теплоты, или количества топлива.

В качестве стандартного вещества, которому при измерении сообщается теплота, выбрана вода, так как она доступна и легко перемешивается. Чтобы выяснить, не ограничено ли наше правило только водой, повторим опыты с 1 кг другого вещества, скажем алюминия или глицерина. Умножение повышения температуры на массу материала, как и в случае воды, дает завышенный результат (для алюминия ответ получается больше в 5 раз). Чтобы добиться того же эффекта теплоты с другим веществом, мы должны, как и для воды, сначала перемножить массу и повышение температуры, а затем помножить это на особое, характерное для данного вещества число (для алюминия около 0,2), называемое удельной теплоемкостью. Удельная теплоемкость — очень полезная характеристика при тепловых расчетах, но мы не будем рассматривать ее здесь подробно).


ДЕМОНСТРАЦИОННЫЕ ОПЫТЫ

...

Опыт 2. Смешивание горячей и холодной воды. Проверим наше правило измерения теплоты в опыте с горячей и холодной водой — одним из первых опытов, которые привели к созданию методов измерения теплоты, или калориметрии. Нальем 0,3 кг холодной воды в один сосуд и 0,4 кг горячей воды в другой большой тонкостенный сосуд. Тщательно перемешаем и измерим их температуры. Быстро выльем холодную воду в горячую, перемешаем и измерим окончательную температуру. В окончательной смеси холодная и теплая вода перемешались, но мы знаем, что их конечная температура — это температура 0.7 кг воды. Если теплота не исчезает, то следует ожидать, что горячая теряет, а холодная вода приобретает равные количества теплоты (со скидкой на потери теплоты). Вычислим повышение температуры холодной воды и понижение температуры горячей.

Равны ли они? Конечно, нет, ибо температура сама по себе не является мерой количества тепла. Попробуем воспользоваться произведением

МАССА ВОДЫ ∙ ИЗМЕНЕНИЕ ТЕМПЕРАТУРЫ.

Произведения не будут точно равны и противоположны, но это самое простое и удовлетворительное правило, и можно найти оправдание тому, что оно не выполняется совершенно точно.


Опыт 3. Измерение количества тепла.

1) Измерьте количество тепла, переданное кастрюле с водой при сжигании 1 см спирта.

2) Измерьте количество тепла, переданное кастрюле с водой бунзеновской горелкой за 1 мин работы.

Это очень простые, грубые опыты, но они позволят почувствовать масштаб Калории.

3) Если угодно, повторите опыты с различными массами воды или различными периодами нагревания.

В последнем случае найдите количество тепла, подведенное за 1 мин.

4) Сожгите 1 см спирта под большим куском алюминия. Допуская, что спирт передает одинаковое количество тепла как алюминию, так и кастрюле с водой, оцените удельную теплоемкость алюминия.

131