Фиг. 104. Киломоль.
Тогда один киломоль любого вещества содержит 6∙10 молекул. (Здесь для краткости будем называть его молем.)
Даже когда воздух откачан очень хорошим насосом и получен «высокий вакуум», т. е. давление будет составлять, например, миллиардную долю атмосферы, то в комнате еще останется 600 000 000 000 000 000 молекул (6∙10).
Масса молекулы
Теперь можно вычислить массу отдельной молекулы. Наша комната объемом 24 м содержит 6∙10 молекул, масса которых всех вместе составляет 28,8 кг. (Это определяется взвешиванием и измерением объема воздуха.) Таким образом,
Масса молекулы воздуха = 28,8/6∙10 = 4,8∙10 кг
Если вместо воздуха взять водород, то масса 6∙10 молекул будет равна 2 кг, а
Масса молекулы водорода = 2 кг/6∙10 = 3,33∙10 кг
Зная из химических соображений, что молекула водорода состоит из двух атомов Н, мы заключаем, что
Масса атома водорода = 1,67∙10 кг
Это масса «протона», которая будет очень важна для нас при подсчете энергии (см. гл. 43).
Молекулы и температура
По универсальной шкале газового термометра абсолютная температура измеряется произведением P∙V, так что, согласно определению, PV = RT, где R — постоянная величина. Если мы возьмем один моль газа, то независимо от его сорта R будет одной и той же.
Кинетическая теория дает
PV = /N∙m∙v = / N∙(/ mv) = / E.
Следовательно,
Кинетическая энергия молекул = / PV = / RT
поэтому
Средняя кинетическая энергия одной молекулы = / RT/N = / (R для одного моля газа / Число Авогадро для одного моля)∙T = / k∙T
где k — газовая постоянная, отнесенная к одной молекуле.
Равномерное распределение энергии привело нас к одинаковой кинетической энергии для молекул любого сорта при одинаковой температуре Т, так что k — универсальная постоянная, одинаковая для молекул любого сорта.
Теперь можно придать температуре ясный и простой смысл.
Абсолютная температура характеризует среднюю кинетическую энергию любой молекулы. Это просто умноженная на 2/(3k) средняя кинетическая энергия. Мы считаем, что молекулы газа делятся своей кинетической энергией с молекулами стенок контейнера или шарика термометра по закону, похожему на закон равномерного распределения энергии.
Разделение изотопов урана
Чтобы выделить Uдиффузией UF, нам нужна пористая перегородка, которая отличала бы быстрые молекулы от медленных. Большие отверстия в перегородке не дадут никакого разделения. Молекулы газа пройдут через них как обычный поток, сталкиваясь друг с другом и приобретая из-за разности давлений дополнительный импульс. Смесь молекул будет проходить через перегородку, не меняясь. Маленькие поры в доли среднего свободного пробега позволяют молекулам проявить свою индивидуальность. Если поры длинные, то, прорываясь сквозь них, каждая молекула множество раз ударяется о стенки и поэтому быстрая молекула получает преимущество по сравнению с медленной. Поры перегородки должны быть гораздо меньше 1000 А°, но больше самих диффундирующих молекул, скажем 5–6 А° для UF. Диаметр их должен быть между 100 и 10 А° — требование необычное для технологов и изобретателей. Такие перегородки можно приготовить, например, в виде тонких пористых пластинок прессовкой металлического порошка. Они используются в огромном масштабе, разделяя килограммами U в системе каскада из нескольких тысяч стадий с автоматической перекачкой и системой контроля за ядовитыми парами UF. Изменение содержания изотопа напоминает рост суммы вклада в банке по сложным процентам в течение многих лет. Для разделения нужно множество стадий с перекачиванием молекул на вход предыдущей стадии (см. фиг. 18, стр. 360).
Вакуумные насосы и барометры
При проведении исследований по электронике и атомной физике в большинстве установок бывает необходимо создать хороший вакуум. Хороший вакуум нужен и в промышленных масштабах для изготовления радиоламп и рентгеновских трубок. Как сделать подходящие насосы и контролировать остаточное давление в миллионные или даже миллиардные доли атмосферы?
Механические насосы с поршнем в виде вращающегося в масле затвора могут с легкостью понизить давление от одной атмосферы /,/, и даже / доли атмосферы. Для создания еще большего вакуума применяют более быстрые «поршни» — отдельные движущиеся молекулы. Поток «горячих» молекул паров ртути несется вдоль цилиндра, стенки которого охлаждаются холодной водой и замедляют молекулы при ударах до малых скоростей. Таким образом получается много быстрых молекул ртути в верхней части и медленных — в нижней. Попавшая сюда молекула воздуха чаще и сильнее толкается вниз молекулами горячей ртути, чем вверх холодной; сверху сыплются сильные удары, снизу только шлепки; насос так и работает: стук… шлеп…стук… шлеп… стук…шлеп…. И «бродяга» в среднем приобретает импульс вниз.
Попадая через отверстие А (фиг. 105) в основной объем, молекулы воздуха проталкиваются к отверстию В, где удаляются механическим насосом. Эта система как будто не очень много обещает, однако молекулы ртути при охлаждении так меняют, свою скорость, что прибор оказывается очень эффективным. Вместе с хорошим механическим насосом такой диффузионный насос способен понизить давление до миллиардных долей атмосферного. В промышленных диффузионных насосах стекло заменяется металлом, а ртуть — кипящим маслом. Радиолампы и другие приборы, в которых нужен высокий вакуум, при откачке прогреваются, чтобы выгнать прилепившиеся к стенкам газы. Для окончательной очистки внутри лампы производится электрический взрыв маленького кусочка металла (геттер), который, образуя на стенках тонкое зеркало, запирает тем самым оставшиеся там молекулы воздуха.