Физика для любознательных. Том 2. Наука о Земле и - Страница 164


К оглавлению

164

ДЕМОНСТРАЦИОННЫЕ ОПЫТЫ

...

Опыт 1. Ко дну стеклянной колбы прикреплен тоненький кварцевый (из чистого расплавленного песка) стебелек о маленьким набалдашником. Если запустить этот крошечный маятник, он будет колебаться, но трение о воздух о течением времени уменьшит амплитуду его колебаний. Выкачивая все больше и больше воздуха, мы обнаружим, что затухание из-за трения в воздухе остается почти одним и тем же, как и предсказывает кинетическая теория. Однако это не может быть верно до самого конца, т. е. до полного вакуума. Наша теория должна лопнуть, она сама же предсказывает свой крах. Трение будет оставаться неизменным, пока средний свободный пробег увеличивается пропорционально уменьшению числа молекул. Но когда выкачано столько газа, что средний свободный пробег сравнивается с размерами колбы, дальнейшее выкачивание уже не будет увеличивать пробега, а лишь уменьшит число переносчиков импульса. Так что внутреннее трение постоянно вплоть до давлений, при которых длина свободного пробега порядка размеров колбы; при меньших давлениях внутреннее трение будет падать до нуля. Этим можно воспользоваться для оценки среднего свободного пробега. Выкачивайте воздух из колбы до тех пор, пока амплитуда колебаний маятника не перестанет уменьшаться. Измерьте давление оставшегося в колбе воздуха и радиус колбы. Затем найдите средний свободный пробег при атмосферном давлении.


Опыт 2. Вот запись данных одного опыта. Радиус сферической колбы составлял 0,10 м. Внутреннее трение было почти постоянным, начиная от 1 и до 0,00001 атм. При давлении в 1 миллионную долю атмосферы трение заметно уменьшилось. Следовательно, при / атм свободный пробег составляет 0,10 м. При 1 атм давление и плотность будут в 1 000 000 раз больше (закон Бойля), а средний свободный пробег в 1 000 000 раз меньше. Поэтому он равен (0,1 м)∙(1 000 000), или 10 м, т. е. 1000 А°.

Эти данные подобраны так, чтобы получить правильный свободный пробег, и все же они вполне возможны. Настоящий эксперимент дает приближенные данные, и средний свободный пробег может оказаться в несколько раз больше или меньше. Средний свободный пробег можно найти из точных измерений скорости протекания газа через капиллярную трубку с тем же механизмом трения. Для атмосферного воздуха это дает около 10 м, или 1000 А°.



Фиг. 122. Проверка независимости внутреннего трения в газе от давления.


...

«Модель», иллюстрирующая внутреннее трение в газе

Механизм внутреннего трения в газах или вязкости можно проиллюстрировать следующей аналогией. Представьте себе железную дорогу. Имеется девять путей в направлении с севера на юг. По центральному пути на север идет скорый поезд с постоянной скоростью 100 км/час. По другим путям в том же направлении движутся длинные товарные поезда с открытыми платформами. Скорость соседних со скорым поездов 80 км/час, тех, которые идут по следующим путям, 60 км/час, затем 40 км/час и, наконец, крайних 20 км/час.

На каждой из платформ стоят по два человека и регулярно бросают с востока на запад теннисные мячи. Кроме того, они ловят мячи, которые им бросают с соседнего поезда, так что масса поездов не уменьшается и не увеличивается. По краям полотна тоже стоят люди, которые ловят мячи, бросаемые с крайнего товарного поезда, и отбрасывают их обратно. Имеются люди и на скором поезде, они тоже ловят теннисные мячи и бросают их на восток и на запад. Им ничего не известно о физике относительных скоростей, и, не учитывая своего движения, они метят прямо в соседний поезд, т. е. бросают мячи перпендикулярно направлению движения поезда. Поэтому брошенный с поезда мяч переносит как боковой импульс, так и импульс в северном направлении, соответствующий скорости поезда.

Мячи в среднем попадают в скорый поезд с той же частотой, что и вылетают из него, т. е. перебрасывание мячей не изменяет массы. Но оно уносит импульс.



Фиг. 123. Иллюстрация к приведенному примеру.


...

Каждый мяч, брошенный со скорого поезда, движется вперед (на север) со скоростью 100 км/час, и уносит некоторый импульс, направленный вперед. Каждый мяч, попадающий на скорый поезд с соседних товарных поездов, идущих со скоростью 80 км/час, приносит меньший импульс, направленный вперед. В итоге скорый поезд теряет больше импульса, чем получает. Это скажется в виде тормозящей поезд силы, и не компенсируй эту игру тяга локомотива, поезд затормозит. (Точки приложения силы — руки людей, когда они ловят возвращающиеся к ним мячи. Мяч движется вперед медленнее, чем человек, который должен выбросить вперед руки и смягчить удар. Когда человек ловит мяч, то ускоряет его до скорости поезда). Промежуточные поезда тоже теряют и приобретают мячи с одинаковой частотой, но в этой модели с одинаковой частотой идет потеря и приобретение ими импульса, ибо с одной стороны летят более быстрые мячи, а с другой — более медленные. Те люди, которые стоят по краям полотна, получают импульсы, направленные вперед, и испытывают силу, увлекающую их вперед.

Такова модель движения твердого тела в газе. Скорый поезд представляем собой движущееся тело, товарные поезда — прилегающие к нему слои газа, а мячи — летящие вбок молекулы.

Удалим теперь половину мячей и половину ловящих их людей, оставив половину платформ пустыми (так что мяч может пролетать на платформу на более удаленном пути). Прежде мяч всегда ловился на следующем пути. Теперь же в среднем до захвата он будет пролетать через соседний путь. Средний свободный пролет мяча удвоился! Скорый поезд теперь теряет мячи, летящие вперед со скоростью 100 км/час, а захватывает мячи, летящие вперед с двух более удаленных путей со скоростью только 60 км/час. Разность скоростей вместо 100—80 будет 100—60, так что каждый обмен мячами в среднем означает вдвое больший импульс. Однако вдвое уменьшилось и количество мячей. Тормозящая сила, следовательно, остается той же, мячей вдвое меньше, а вклад каждого в тормозящую силу вдвое больше.

164