Таким образом, астрономам в Александрии были известны приближенные значения размеров небесной системы и этими значениями (с незначительными изменениями) пользовались астрономы в течение многих столетий:
Земля: радиус 4000 миль.
Луна: расстояние от Земли 60 земных радиусов, или 240 000 миль; собственный радиус 1100 миль.
Солнце: расстояние от Земли 1200 земных радиусов (это значение считалось неточным, каким оно и было); собственный радиус 44 000 миль.
Планеты: расстояния до них были совершенно неизвестны, но предполагалось, что все они находятся дальше, чем Луна.
Звезды: расстояния до них также были совершенно неизвестны, предполагалось, что они находятся за Солнцем и планетами.
Из этих оценок видно, что на рисунках, иллюстрирующих затмения, обычно совершенно не выдержан масштаб. Фиг. 42 и 43 дают более близкие к действительности схемы, основанные на современных измерениях. Не удивительно, что затмения происходят столь редко. Призрачных конусов теней можно и не заметить. Орбита Луны наклонена под углом 5° к видимой траектории Солнца, поэтому затмения происходят еще реже.
Фиг. 42. Солнце, Луна, Земля.
Фиг. 43. Конусы теней Луны и Земли (в масштабе).
Более поздние теории
Смелое предположение о том, что Земля вращается и движется вокруг Солнца, не было встречено благосклонно Александрийской школой. По-прежнему оставалось популярным представление о том, что Земля покоится и находится в центре мироздания, однако модель с вращающимися концентрическими сферами была слишком сложной. Не совсем равномерное движение Солнца по «орбите» можно было описать, используя эксцентрическую окружность: согласно этой модели, Солнце движется по такой окружности равномерно. Земля же неподвижна и находится не в центре круга, а на некотором расстоянии от него. При этом, если наблюдать за Солнцем с Земли, будет казаться, что оно движется быстрее в некоторые времена года (примерно в декабре, в точке А) и медленнее на 6 месяцев позднее (в точке В). Это была неплохая теория. Теория должна быть простой и основываться на простых допущениях.
Фиг. 44. Схема эксцентрической орбиты Солнца.
Эти требования удовлетворялись: движение по окружности с постоянным радиусом происходило с постоянной скоростью. Это постоянство было необходимо с точки зрения древних греков, а фактически с точки зрения каждого методически мыслящего ученого. Без него теория превратилась бы в нечто бесформенное.
Поместить Землю не в центре круга означало досадное отклонение от симметрии, но и скорость Солнца при этом оказалась несимметричной — наше лето продолжительнее зимы. Аналогичная схема была пригодна и для Луны, для планет же требовалась более сложная схема. Каждая планета должна была равномерно двигаться по кругу, совершая полный оборот в течение собственного «года» вокруг неподвижной Земли, находящейся не в центре этого круга, а на некотором расстоянии от него, но тогда весь круг, орбита планеты и центр круга должны совершать полный оборот вокруг Земли за 365 дней. Таким образом, к основному вращению добавлялось еще одно (по окружности радиуса ЕС), в результате чего планета двигалась по эпициклоиде. На это движение накладывалось суточное движение всей звездной картины.
В другой схеме, приводившей к аналогичным результатам, вводился неподвижный главный круг (деферент) с радиальным плечом, вращающимся с постоянной скоростью. Конец плеча несет на себе малый круг (эпициклоиду). Радиус этого малого круга несет на себе планету, которая движется с постоянной скоростью, совершая один оборот за 365 дней. Хотя эти схемы оперируют с кругами, в них по-прежнему употребляли термин «сферы». В течение многих столетий астрономы привыкли рассматривать «движение небесных сфер», а сферы сами становились все более и более реальными по мере того, как восхищение греков чистой теорией уступало место детской настойчивости в поисках истины.
Фиг. 45. Схема эксцентрической орбиты планеты.
Больших успехов добился Гиппарх (~ 140 г. до н. э.), «один из величайших математиков и астрономов всех времен». Он был внимательным наблюдателем, создавал новые приборы и использовал их для определения положения звезд. Он составил звездный каталог, в котором дал классификацию звезд по их яркости и указал положение примерно тысячи звезд, пользуясь понятиями небесной широты и долготы. Насколько известно, Гиппарх создал первый небесный глобус. В те времена телескопов не существовало, единственным прибором был человеческий глаз. Для измерения углов служили простые приборы, подобные циркулю. Тем не менее Гиппарх измерял углы с точностью /°. Гиппарх был создателем сферической тригонометрии, он применил ее для исследования Солнца и Луны. Он показал, что эксцентрические круги и эпициклы эквивалентны с точки зрения описания небесных движений.
Добавляя собственные наблюдения к наблюдениям древних греков и вавилонским записям, он разработал системы эпициклов Солнца и Луны. Проделать то же для планет оказалось труднее из-за отсутствия точных данных, и он приступил к новым измерениям.