Фиг. 144. Схематическое представление опыта Майкельсона-Морли.
Зеркала поворачивали пучки назад, и они, вновь соединяясь, давали интерференционную картину. Малейшее изменение времени пролета одного луча по сравнению с другим смещало бы эту картину. Предположим теперь, что в какое-то время вся аппаратура движется вверх. Внешний наблюдатель увидел бы, что луч света отклоняется «эфирным» ветром вверх или вниз, причем наклон для каждого из путей будет один и тот же. В другое же время года Земля как целое движется горизонтально, поэтому горизонтальному лучу понадобится больше времени, чтобы пройти путь в оба конца, чем вертикальному.
В обычных курсах вы найдете описание этого эксперимента. С помощью алгебры показывается, что если вся лаборатория движется сквозь «эфир», то свету понадобится больше времени на то, чтобы пройти вдоль потока и вернуться назад, нежели пройти поперек потока. Вы можете убедиться в этом на следующем примере. Пусть вместо света взад и вперед в клетке летает птица, а клетка движется относительно воздуха (фиг. 145 и 146).
Можно либо равномерно тащить клетку в стоячем воздухе, либо оставить, клетку в покое и создать эквивалентный поток воздуха в противоположном направлении (фиг. 147).
Остановимся на последнем варианте, но эту историю с тем же результатом можно пересказать и для движущейся клетки. Предположим, что скорость птицы относительно воздуха составляет 5 м/сек, клетка представляет собой квадрат 40 м х 40 м, а ветер дует со скоростью 3 м/сек. Чтобы пролететь от одного конца до другого и вернуться назад, птице требуется 10 сек + 10 сек, т. е. всего 20 сек. Но чтобы пролететь от одного конца до другого и вернуться назад, требуется
[40 м /(5–3) м/сек] + [40 м/(5 + 3) м/сек]
или 20 сек + 5 сек, т. е. большее время. Посадите птицу в клетку наподобие только что описанной; время пролета птицы поперек и вдоль клетки скажет вам, насколько быстро относительно воздуха движется клетка. Конечно, можно воспользоваться двумя птицами. Поверните клетку в другом направлении, и время пролета птиц скажет вам, в каком направлении движется клетка и с какой скоростью. Подобный же эксперимент со звуковыми волнами в лаборатории, движущейся относительно воздуха, дал бы вам скорость лаборатории. Пусть в одном углу комнаты стоит горнист и подает сигнал, тогда время возвращения эха от противоположных стен выявит общее движение лаборатории или наличие ветра. (Разумеется, если эта движущаяся лаборатория закрыта со всех сторон и увлекает находящийся в ней воздух с собой, эхо не обнаружит никакого движения.)
Соответствующие опыты со световыми сигналами трудны, но интерференционная картина крайне чувствительна ко времени прохождения. Когда Майкельсон и Морли поставили такой опыт, а Миллер повторил его, ответ получился удивительным: никакого движения «эфира» нет. Опыты повторялись при разных ориентациях и в разные времена года всегда с одним и тем же ответом «движения нет». Будь вы опытным ученым, вы бы сразу спросили: «А какова точность? Каковы ошибки?»
Ответ: «Они таковы, что позволили бы надежно определить скорость, равную /скорости движения Земли вокруг Солнца, а в последних опытах — /скорости Земли».
Фиг. 148. Геометрия полета.
Аберрация тем не менее указывала на движение «эфира», равное / этой скорости. Добавились данные других опытов, оптических, электрических. Вновь и вновь получался все тот же «нулевой результат». Налицо было явное противоречие.
...АБЕРРАЦИЯ ЗВЕЗДНОГО СВЕТА. Попадающий в телескоп свет звезд через 6 месяцев меняет свой наклон
-> Земля движется по орбите вокруг Солнца сквозь «эфир»
ОПЫТЫ МАЙКЕЛЬСОНА, МОРЛИ, МИЛЛЕРА. Сравнение времени прохождения в оба конца световых сигналов в двух перпендикулярных направлениях; дифракционная картина не меняется при повороте прибора или смене времени года
-> Земля не движется сквозь «эфир» или полностью увлекает его
-
ПРОТИВОРЕЧИЕ
К этому добавляла свои неприятности и развивающаяся теория электричества, ибо уравнения Максвелла, по-видимому, написаны для токов и полей в абсолютном пространстве («эфире»). В отличие от законов Ньютона они изменяются преобразованиями Галилея, приобретая в движущейся лаборатории иной вид. Впрочем, придуманные Лоренцем преобразования сохраняют форму уравнений Максвелла и в случае движущегося наблюдателя. Они, по-видимому, согласуются с фактами; эффекты не зависят от того, что движется — магнит или катушка. При преобразованиях Лоренца опыты по электричеству дают сведения лишь об относительной скорости (что они и делают), но ничего не говорят об абсолютном движении. Однако от преобразований Лоренца страдает механика. Они превращают F = m∙a и s = v + /at в столь необычную форму, что начинают противоречить наглядной относительности Галилея и простым законам Ньютона.
Для «объяснения» некоторых модификаций опыта Майкельсона-Морли было достаточно фитцджеральдова сокращения. Кеннеди и Торндайк, например, повторили его на приборе с неравными длинами плеч. Нулевой результат требовал лоренцева изменения масштаба времени и сокращения длин.