Физика для любознательных. Том 2. Наука о Земле и - Страница 52


К оглавлению

52

2) Накопление знаний. Научные достижения XVII века значительны и многообразны: к ним следует отнести законы Кеплера, открытие кометы Галлея, закон Гука, открытие Гарвеем системы кровообращения, открытия Бойля в области химии и его закон для идеальных газов.

3) Достижения в области математики. Была изобретена декартова система координат. Графики связали алгебру с геометрией, с одной стороны, сводя геометрические формы и преобразования к сжатым алгебраическим выражениям, а с другой — позволяя наглядно представлять алгебраические уравнения.

На графике I фиг. 98 изображена проходящая через начало координат прямая линия, на которой нанесены точки (x, y), (x, y)…. Из подобия треугольников следует, что отношения y/x, y/x…. равны между собой, т. е. одинаковы для любой точки на прямой. Обозначим эту постоянную k. Тогда каждая точка на прямой будет представлена парой значений (например, x, y), удовлетворяющих соотношению у/х = k или у = . Это и есть алгебраическое описание графика, а прямая представляет собой геометрический образ данного соотношения. Если у и х — результаты физических измерений (например, s и t для падающего тела), то прямая линия выражает соотношение y = (const)x, или у ~ х, а наклон прямой определяет постоянную.



Фиг. 98. Графики в декартовой системе координат.


График II иллюстрирует уравнение у = kх + с. В этом случае мы не можем сказать, что у ~ х, но можем сказать, что Δу ~ Δх.

На графике III изображена окружность, причем

для точки P

xу = R

для точки P

xу= R

таким образом, уравнение этой окружности имеет вид

xу= R

Его можно переписать так:

x/R + y/R = 1

Эллипс можно получить равномерным растяжением окружности.

Нарисуйте окружность на листе резины и растяните этот лист (фиг. 99).



Фиг. 99. Растяжение окружности в эллипс.


Радиус R превратится в полуоси а и b. Окружность в соответствии о уравнением x/R + y/R = 1 и с площадью круга πR = π∙RR превратится в эллипс, описываемый уравнением…?.. = 1 и площадью =?

Таким образом, с помощью декартовой геометрии эллиптические орбиты можно записать в виде алгебраических уравнений.

Возникли две серьезные математические проблемы, связанные с вычислениями: определение угла наклона касательных к кривым и площадей под кривыми с помощью математики, т. е. создание методов дифференцирования и интегрирования. Тангенс угла наклона касательной определяет скорость изменения функции. Вычисления сводятся просто к нахождению скорости изменения функции в некоторой точке. Это позволяет нам вычислять ускорения из выражения, описывающего изменение скорости, или скорости из выражения, связывающего расстояние и время. (Например: если s = 16t, то v = 32t; отсюда следует, что а = 32, т. е. постоянное значение.) Интегрирование — операция сложения бесконечно большого числа бесконечно малых величин: нахождение площади путем сложения элементов исчезающе малых размеров (как и в случае второго закона Кеплера) или нахождение силы притяжения между телами конечных размеров путем суммирования сил притяжения бесконечно малых элементов объема этих тел.

Вы уже пользовались графиками и вычислениями ранее, при решении задачи о колесе, катящемся вниз с холма.

1. ЭКСПЕРИМЕНТ —> ГРАФИК. Вы наносите на график зависимость s от t. Точки изображают события. Проведенная через эти точки прямая представляет собой совокупность фактов.

2. РАЗМЫШЛЕНИЯ —> ТЕОРИЯ. Предположите, что ускорение постоянно, рассматривая это как возможный простой закон природы. Вычислите необходимое соотношение между s и t. При интегрировании будут складываться все маленькие расстояния, проходимые с возрастающей скоростью; при этом получится, что при постоянном ускорении s должно меняться пропорционально t.

3. ПРОВЕРКА. Проведите через начало координат прямую, представляющую теоретическое соотношение s ~ t. Если ваши точки лежат близко к этой прямой, то это значит, что движение колеса происходит с ускорением, близким к постоянному. Прямая линия на вашем графике «пробная»; проводя ее, вы отвечаете на вопрос, «имеет ли место движение с постоянным ускорением». Проведя на вашем графике наиболее подходящую к экспериментальным точкам кривую, вы подтвердите вашу гипотезу — и получите таким образом закон, справедливый в данном случае.

4) Развитие приборостроения. Новые приборы, как и новые математические методы, могут способствовать быстрому развитию науки. Семнадцатый век был веком многочисленных изобретений в области приборостроения: телескоп, микроскоп, вакуумный насос, барометр, маятниковые часы, первые термометры — все эти приборы содействовали необычайным успехам экспериментальной физики и науки в целом.

5) Отношение к науке и новые методы. От древних греков до Галилея наука создавалась теми, кто собирал, наблюдал, составлял и размышлял. Собиратели накапливали знания, которые были столь бессистемны, что их вряд ли можно было назвать наукой. Те, кто составлял схемы, систематизировали эти знания и извлекали из них правила, которые служили практическим целям, ибо позволяли зачастую суммировать факты и даже делать предсказания. Эти правила вместе с накопленными знаниями и методами для приобретения новых знаний и положили начало новой науке. Тем временем мыслители были заняты объяснениями, т. е. утверждениями, которые позволяли бы связать полученные знания между собой и обеспечить их лучшее «понимание» и восприятие. Многие объяснения или доводы рождались только на основе размышлений, почти вне связи с опытом.

52