«СТАРАЯ» СИЛА = МАССА∙СКОРОСТЬ ВСЕ УБЫСТРЯЮЩЕГОСЯ ДВИЖЕНИЯ.
Для новых сил верно другое соотношение:
«НОВАЯ» СИЛА = МАССА∙(СКОРОСТЬ)/РАДИУС
Как следует из эксперимента, эти новые силы могут быть реальными силами, которые должны обеспечить движение тела по окружности. Однако во избежание хлопот мы не станем вводить такого ограничения, а будем применять термин «ускорение» для всех видов Δv/Δt, ибо из опыта следует, что во всех случаях соотношение F = M∙a характеризует результирующую силу. Исходя из этого мы должны произвести две серии проверок соотношения F = M∙a; одна из них связана с рассмотрением прямолинейного движения, а другая — с телами, движущимися по окружности.
Двигаясь по окружности, тело устремляется внутрь к центру, в противном случае оно продолжало бы двигаться по касательной; уходя немного по касательной, тело притягивается к центру, и так оно движется, непрерывно стремясь внутрь, но не попадая в центр. Если такая ситуация вам кажется парадоксальной, то понаблюдайте за конькобежцем, выписывающим небольшие круги на льду, — он все время как бы падает, наклонившись вперед (фиг. 115).
На вопрос 1 следует ответить так: ускорение перпендикулярно направлению движения и поэтому не увеличивает скорости в этом направлении. Добавляясь к нулевой скорости, это ускорение увлекает тело по орбите постоянного радиуса.
Центростремительная или центробежная сила?
Сила, которая тянет тело к центру орбиты, изменяя лишь направление скорости, называется центростремительной. В противоположность этому сила, которая приводит к тому, что тело удаляется от центра, называется центробежной. Вы часто слышите эти названия, но, к сожалению, этот термин вводит в заблуждение, когда его применяют к движущимся телам. Конечно, существует направленная наружу центробежная сила, действующая на «партнера», расположенного в центре, например на человека, который держит веревку с вращающимся на ней камнем. Такой подход вносит путаницу в определение силы, действующей на движущееся тело. Поэтому термина «центробежная сила» лучше избегать. Однако, поскольку он широко распространен, особенно среди инженеров, мы должны будем вернуться к нему позднее и вкратце обсудить его значение.
Центростремительная сила. Mv/R
Если масса М движется по окружности с радиусом R с постоянной скоростью v, то должно существовать реальное воздействие, обеспечивающее необходимую силу, равную Mv/R (фиг. 116, а). Если результирующая реальных сил, действующих на М, больше Mv/R, то скорость тела будет увеличиваться в направлении к центру и оно будет двигаться по свертывающейся спирали. Если действующие силы слишком малы, то траектория будет представлять собой раскручивающуюся спираль (фиг. 116, б). Существует много механических систем, в которых, как показано в приводимых ниже примерах, эта сила соответствует необходимой величине. Теперь мы подробно рассмотрим некоторые примеры движения по окружности — от камня на веревке до современной центрифуги.
Фиг. 216. Движение по окружности
Камень вращается на веревке. Веревка растягивается до тех пор, пока ее натяжение не станет равным силе Mv/R, тянущей внутрь.
Тележка в «мертвой петле». На тележку действует сила тяжести и сила со стороны рельсов. Если пренебречь трением, то можно считать, что сила, действующая со стороны рельсов, направлена перпендикулярно им. Продолжите это обсуждение, отвечая на вопросы задачи 3.
Задача 3
Предположим, что тележка выполняет мертвую петлю, как это показано на фиг. 117. Чтобы тележка двигалась по окружности, в точке А должна действовать некоторая сила.
Фиг. 117. К задаче 3.
а) Какое направление должна иметь эта сила?
б) Что обеспечивает эту силу?
в) Какая другая сила (силы) должна действовать в точке А на тележку?
г) Какое влияние должна оказывать эта другая сила (силы) на движение тележки?
[Замечание. Отвечая на вопрос (г), забудьте про силы, о которых говорилось в вопросах (а) и (б). Это — реальная сила, и она должна присутствовать. Она играет особую роль. Здесь не имеет смысла заниматься сложением векторов, чтобы получить результирующую силу.]
Для движения тележки по окружности необходимо, чтобы в точке В была приложена сила.
д) Какое направление должна иметь эта сила в точке В?
е) Как обеспечивается наличие такой силы?
ж) Если тележка движется значительно медленнее, то потребуется много меньшая сила, Почему?
з) Почему сила в точке В может оказаться слишком большой? Что произойдет, если эта сила будет слишком велика?
Езда на велосипеде. Когда велосипедист движется по горизонтальному кругу, реальное воздействие должно обеспечить внутреннюю, центростремительную силу. На неровной дороге таким воздействием будет трение, оно обеспечивает горизонтальную силу, которая толкает шины в сторону. (На ледяной дорожке трение практически отсутствует и велосипедист не сможет сделать поворот, он будет проскальзывать вперед, считая, что вопреки желанию скользит в противоположную сторону.) При повороте велосипедист наклоняется вбок. Наклон сам по себе не увеличивает силы трения, но он необходим, ибо иначе сила, действующая на колеса со стороны дороги, опрокинет велосипедиста. Если он вместо прямой дороги движется по наклонному треку, то нет больше необходимости в боковой силе трения* наклонный трек отталкивает велосипедиста от своей поверхности с силой, которая имеет вертикальную компоненту, уравновешивающую его вес, и горизонтальную компоненту, которая обеспечивает необходимую центростремительную силу.