Физика для любознательных. Том 2. Наука о Земле и - Страница 69


К оглавлению

69

В соответствии с законами термодинамики и выводами из них нам приходится пользоваться шкалой Кельвина. К счастью, шкала Кельвина почти не отличается от шкалы обычного ртутного термометра, так что выводы термодинамики мы можем непосредственно использовать в практических целях.

Такое тесное переплетение эксперимента и определений, образующее теорию, характерно для современной науки. Если вы критически посмотрите на законы Ньютона, то придете к заключению, что первый закон содержит объяснение понятия силы, определяет ее природу, а второй закон определяет способ измерения или силы, или массы. Так, может быть, эти законы — просто плод нашей фантазии? Нет, это не так. Оба закона соответствуют реальным явлениям природы, что подтверждает эксперимент. В них содержится твердая фактическая основа, хотя ее, быть может, нелегко извлечь логически из входящих в эти законы определений.

Спустя два столетия после того, как Ньютон сформулировал свои законы, начали возникать трудности и сомнения. Ньютон принимал «относительность Галилея». В созданной им теории не имеет значения, движется ли наблюдатель с постоянной скоростью или находится в состоянии покоя. Однако Ньютон считал, что абсолютную систему отсчета можно обнаружить по эффекту вращения. (Если бы Земля оказалась в состоянии покоя, а небесные тела вращались вокруг нее, разве могли бы мы наблюдать кривизну земной поверхности, изменение силы тяжести, поворот плоскости качания маятника Фуко?) Ньютон писал об абсолютном движении: под действием сил возникают абсолютные ускорения, а не ускорения относительно какой-то движущейся системы координат. Но где находится неподвижная, фиксированная система отсчета? Земля, Солнце, звезды — все движется. Существует ли реальная фиксированная система отсчета? Если мы не можем указать такой системы, то стоит ли включать ее в наше рассмотрение механики? Вот из таких сомнений и возникла теория относительности. На первых порах, изучая теоретическую механику, разумно забыть об этих сомнениях и принять законы Ньютона как простые, надежные рабочие правила. Используя их для решения задач, помните, что это — блестяще сформулированный итог согласованных определений и экспериментальных наблюдений. Это не застывшие законы, которые нужно цитировать, чтобы все стало на свои места! Они указывают нам, как нужно обрабатывать результаты проведенных опытов и как предсказывать, что должно случиться в будущих экспериментах. В то же время они знакомят нас с такими полезными понятиями, как масса и количество движения.


Ньютон и движение планет

Ньютон сформулировал свои законы так, чтобы иметь возможность пользоваться ими. Обратившись к проблемам астрономии, он сразу же ответил на вопрос, который не могли решить греки и который поставил в тупик Кеплера и даже Галилея: «Что удерживает Луну и планеты при их движении по орбитам?» Предполагалось все — хрустальные сферы, естественное круговое движение, вращающиеся рычаги и магнитные флюиды, вихри. Ньютон понимал, что такие объяснения содержат детали, в которых нет необходимости. Сила не нужна для движения планеты (первый закон).

Предоставленные сами себе, они будут вечно двигаться прямолинейно. Сила необходима, чтобы планеты двигались по криволинейной орбите, ибо если нет силы, то движение будет прямолинейным.

Какой должна быть величина внешней силы? Откуда она может взяться? Это были новые вопросы, поставленные Ньютоном.

Если к этому движению применим второй закон, то необходима внешняя сила, равная произведению массы на ускорение. Но чему равно ускорение при движении по орбите? Ньютон исследовал равномерное движение по круговой орбите. Орбиты Луны и большинства планет близки к окружности. Он пришел к тому же результату, что и другие ученые, решавшие эту задачу: ускорение, направленное к центру орбиты по радиусу, равно v/R, где v — скорость на орбите, a R — радиус орбиты. (См. главу 21, где вводится это ускорение. Для этого используются геометрические представления, но масса и сила не фигурируют. Ньютон получил свой результат необычным путем, рассматривая движущееся тело как снаряд и каждый элемент длины окружности как участок вблизи вершины параболы, по которому движется снаряд.) Тогда сила должна быть равна Mv/R и направлена по радиусу к центру орбиты. Так, Луна, движущаяся по круговой орбите, всегда испытывает ускорение в сторону Земли, но никогда не приближается к ней. Это можно представлять себе как падение с касательной к окружности на окружность, причем орбита образуется в результате того, что тело начинает «падать» и достигает в нужный момент следующего участка орбиты, не приближаясь, однако, к ее центру. Если это вам покажется странным, вспомните, что любой снаряд, летящий по параболе, в ее вершине испытывает, ускорение g, однако в этой точке снаряд не опускается и не поднимается, таким образом не приближаясь к Земле. Существуют моменты времени, когда ускорение имеется, но скорость в его направлении равна нулю. Можно сказать, что лунная орбита состоит из последовательных «вершин» парабол.

И вот, наконец, Ньютону удалось объяснить, откуда берется эта сила. Он предположил, что силы, заставляющие падать тела на поверхность Земли, могут также притягивать Луну и служат причиной ее движения по орбите. Существует легенда о том, что Ньютон обдумывал эту проблему, сидя в саду, и яблоко, упавшее ему на голову, подсказало решение. Такое притяжение мы называем «гравитацией» — словом, которое означает тяжесть или подразумевает какую-то связь с весом. Во многих случаях более подходит обычное слово вес.

69