Из второго закона Ньютона следует, что количество движения по ВС — вектор. Поэтому суммирование необходимо проводить по законам векторного сложения (фиг. 155).
Фиг. 155. Изменение количества движения в точке В.
Так как масса планеты постоянна, то мы можем сократить ее и пользоваться для сложения скоростями:
СКОРОСТЬ ВДОЛЬ АВ + ПРИРАЩЕНИЕ СКОРОСТИ ВДОЛЬ BS = СКОРОСТЬ ПО НАПРАВЛЕНИЮ ВС.
Изобразим скорость планеты вдоль прямой АВ отрезком АВ. Тогда отрезок ВХ также будет равен этой скорости, а отрезок ВС будет соответствовать новой скорости планеты, направленной по прямой ВС (так как все отрезки равны расстояниям, проходимым за равные промежутки времени). Пользуясь этим масштабом, мы можем построить векторную диаграмму (фиг. 156), выражающую записанные выше уравнения.
Фиг. 156. Повторение фиг. 165 для скоростей.
Пусть ВХ (=AВ) — начальная скорость до воздействия усилия, а ВС — конечная скорость после воздействия. Изменение скорости будет равно вектору BY, направленному по линии BS в сторону точки S. Построив параллелограмм с диагональю ВС, получим требуемый результат. Из свойств параллелограмма следует, что сторона ХС параллельна BY, так что точка С лежит на линии, параллельной BS.
Теперь рассмотрим треугольники SBC и SBX, представленные на фиг. 157.
Фиг. 157. Повторение фиг. 154, точка С лежит на прямой ХС, параллельной BY или ВS (а); треугольники одинаковой площади заштрихованы (б).
Они имеют одно и то же основание BS и находятся между параллельными прямыми, поэтому площади их равны. Площадь SBC равна площади SBX, которая в свою очередь равна площади SBА. Следовательно, треугольники SBА и SBC имеют одинаковую площадь. По аналогичным причинам треугольники SBC и SCD тоже имеют равные площади. В конечном итоге все площади треугольников равны между собой и закон Кеплера для этого движения выполняется. При этом необходимо, чтобы усилие всходило из одной и той же точки S. Если теперь чаще прикладывать усилие (но соответственно меньшее по величине), мы получим орбиту, как на фиг. 158, близкую к гладкой кривой. При этом будет соблюдаться и закон Кеплера, потому что сила направлена от планеты к Солнцу. Если прикладывать усилия еще чаще, то в пределе мы придем к случаю непрерывной силы с орбитой в виде гладкой кривой. Это и доказывает справедливость второго закона Кеплера для гладкой криволинейной орбиты.
Фиг. 158. Уменьшение равных интервалов времени от А до В, от В до С.
Второй закон Кеплера и момент количества движения
Ньютон пришел ко второму закону Кеплера, исходя из основных положений своей механики. Закон обратных квадратов для этого не требуется. Любое притяжение, направленное к Солнцу как центру, будет обеспечивать выполнение этого закона.
В современной механике эта задача представляет собой случай сохранения момента количества движения. Что такое момент количества движения и почему мы уверены, что он сохраняется? Ниже дано краткое объяснение, слишком примитивное, чтобы быть убедительным, но имеющее целью дать общее представление об этом фундаментальном законе сохранения.
Прямолинейное движение описывается такими понятиями, как расстояние (s), скорость (v), ускоряющая сила (F)…. законами и соотношениями типа F∙Δt = Δ(Mv)…, и такими принципами, как сохранение количества движения. Когда тело вращается, не совершая поступательного движения, мы можем применить законы Ньютона к каждой его движущейся части и составить эквивалентную схему. Вместо пройденного расстояния мы будем теперь иметь угол поворота (выраженный в радианах или числе оборотов). Вместо линейной скорости мы будем иметь дело с угловой скоростью (в оборотах в минуту или в радианах в секунду). Вместо силы будет фигурировать момент силы, равный произведению силы на плечо, — причина, заставляющая тело вращаться все быстрее и быстрее. Соотношению
СИЛА∙ВРЕМЯ = ПРИРАЩЕНИЕ КОЛИЧЕСТВА ДВИЖЕНИЯ,
т. е. второму закону Ньютона, будет соответствовать
МОМЕНТ СИЛЫ∙ВРЕМЯ = ПРИРАЩЕНИЕ МОМЕНТА КОЛИЧЕСТВА ДВИЖЕНИЯ.
Задумайтесь над смыслом момента количества движения, и вы, вероятно, придете к правильному заключению: подобно тому как момент силы равен произведению силы на плечо (F∙r), момент количества движения равен количеству движения, умноженному на плечо (Mv∙r).
Умножьте F и Mv на плечо относительно выбранной оси, и вы получите вариант второго закона Ньютона для случая вращательного движения. Плечо — это перпендикуляр, проведенный от оси в направлении действия вектора силы или количества движения.
Предположим, что два невращающихся тела сталкиваются и в результате одно из них начинает вращаться. Силы взаимодействия тел равны и противоположно направлены (третий закон Ньютона); плечо относительно произвольной оси для этих сил будет одними тем же. Поэтому моменты силы обоих тел относительно выбранной нами оси будут одинаковы по величине и противоположны по направлению. Приобретенный одним телом при столкновении момент количества движения будет равен по величине моменту количества движения второго тела, а их направления будут противоположными. Следовательно, полный момент обоих тел, приобретенный ими в процессе столкновения, равен нулю. Если одно тело начинает вращаться, другое тоже будет вращаться, но в противоположную сторону, вокруг той же оси. При любом столкновении или другом виде взаимодействия момент количества движения сохраняется, он может только передаваться без потерь или могут возникать равные по величине и противоположные по направлению моменты количества движения.