Физика для любознательных. Том 2. Наука о Земле и - Страница 123


К оглавлению

123

Следовательно, часть массы вещества взаимозаменяема массой излучения, кинетической энергией и т. п. Вот почему мы говорим: «энергия и вещество способны частично к взаимным превращениям». Более того, мы теперь можем создавать частицы вещества, которые обладают массой и способны полностью превращаться в излучение, также имеющее массу. Энергия этого излучения может перейти в другие формы, передав им свою массу. И наоборот, излучение способно превращаться в частицы вещества. Так что вместо «энергия обладает массой» мы можем сказать «частицы вещества и излучение взаимопревращаемы, а потому способны к взаимным превращениям с другими формами энергии». В этом и состоит создание и уничтожение вещества. Такие разрушительные события не могут происходить в царстве обычной физики, химии и техники, их следует искать либо в микроскопических, но активных процессах, изучаемых ядерной физикой, либо в высокотемпературном горниле атомных бомб, на Солнце и звездах (ем. гл. 43 и 44). Однако было бы неразумно утверждать, что «энергия — это масса». Мы говорим — «энергия, как и вещество, имеет массу». Но масса порции энергии дается выражением

m = (энергия)/(скорость света).

Обозначая скорость света стандартным значком с, имеем m = Е/с, или после перестановки Е = mc.

Для вещества Е = mc. Мы говорим, что масса обычного вещества таит в себе огромный запас внутренней энергии, равной произведению массы на (скорость света). Но эта энергия заключена в массе и не может быть высвобождена без исчезновения хотя бы части ее.

Как возникла столь удивительная идея и почему она не была открыта раньше? Ее предлагали и раньше — эксперимент и теория в разных видах, — но вплоть до нашего века изменение энергии не наблюдали, ибо в обычных экспериментах оно соответствует невероятно малому изменению массы. Однако сейчас мы уверены, что летящая пуля благодаря своей кинетической энергии имеет дополнительную массу. Даже при скорости 5000 м/сек пуля, которая в покое весила ровно 1 г, будет иметь полную массу 1,00000000001 г. Раскаленная добела платина массой 1 кг всего прибавит 0,000000000004 кг и практически ни одно взвешивание не сможет зарегистрировать эти изменения. Только когда из атомного ядра высвобождаются огромные запасы энергии или когда атомные «снаряды» разгоняются до скорости, близкой к скорости света, масса энергии становится заметной.

Обычная кинетическая энергия дает заметный вклад в массу очень быстрых протонов, получаемых на циклотронах, и это создает трудности при работе с такими машинами.


Почему мы все же верим, что Е = mc?

Откуда взялось соотношение Е = mc? Почему же мы думаем, что энергия Е имеет массу E/с? Сейчас мы воспринимаем это как прямое следствие теории относительности, но первые подозрения возникли еще сто лет назад в связи со свойствами излучения.

Тогда казалось вероятным, что излучение обладает массой. А поскольку излучение переносит, как на крыльях, со скоростью с энергию, точнее, само есть энергия, то появился пример массы, принадлежащей чему-то «невещественному». Экспериментальные законы электромагнетизма предсказывали, что электромагнитные волны должны обладать «массой», равной (энергия)/с. Но до создания теории относительности только необузданная фантазия могла распространить соотношение m = Е/с на другие формы энергии (см. гл. 31).


...

1) Указание о существовании соотношения Е = mc для излучения

Всем сортам электромагнитного излучения (радиоволнам, инфракрасному, видимому и ультрафиолетовому свету и т. д) свойственны некоторые общие черты: все они распространяются в пустоте с одинаковой скоростью с, все переносят энергию и импульс. Мы представляем себе свет и другое излучение в виде волн, распространяющихся с большой, но определенной скоростью с =3∙10 м/сек. Когда свет падает на поглощающую поверхность, возникает теплота, показывающая, что поток света несет энергию. Эта энергия должна распространяться вместе с потоком с той же скоростью света. На деле скорость света именно так и измеряется: до времени пролета порцией световой энергия большого расстояния.

При отражении света от зеркала теплота не выделяется, ибо отраженный луч уносит всю энергию, но на зеркало действует давление, подобное давлению упругих шариков или молекул. Если же вместо зеркала свет попадает на черную поглощающую поверхность, давление становится вдвое меньше. Это свидетельствует о том, что луч несет количество движения, поворачиваемое зеркалом. Следовательно, свет ведет себя так, как если бы у него была масса. Но можно ли откуда-то еще узнать, что нечто обладает массой? Существует ли масса по своему собственному праву, как, например, длина, зеленый цвет или вода? Или это искусственное понятие, определяемое поведением наподобие Скромности? Масса, на самом деле, известна нам в трех проявлениях:

A. Туманное утверждение, характеризующее количество «вещества».

(Масса с этой точки зрения присуща веществу — сущности, которую мы можем увидеть, потрогать, толкнуть.)

Б. Определенные утверждения типа F∙Δt = Δ(Mv) и Е = /Mv.

B. Масса сохраняется.

Если мы отбросим неясное утверждение и отложим пока сохранение, то остается определить массу через количество движения и энергию. Тогда любая движущаяся вещь с количеством движения и энергией должна иметь «массу». Ее массой должно быть (количество движения)/(скорость), или 2∙(Е)/(скорость).

123