Этот результат применим к любым движущимся массам. Для разных наблюдателей масса имеет разное значение. Посадите наблюдателя на движущееся тело, и он измерит так называемую «массу покоя», которая одинакова у всех электронов, у всех протонов, у каждого литра воды и т. п. Но, пролетая мимо тела или видя, как тело проносится мимо него, наблюдатель обнаружит, что тело имеет большую массу: m = m/√(1 — (v/c)). Для обычных скоростей множитель 1/√(1 — (v/c)) практически не дает никакого эффекта. Однако ионы, ускоряемые в циклотроне, значительно увеличивают свою массу. На свой возросший путь они тратят теперь слишком много времени, и если не принять особых мер, то они будут запаздывать все больше и больше! Электроны из ускорителей на миллиарды электрон-вольт настолько массивны, что вполне могут сойти за протоны.
Фиг. 157. Упругое соударение релятивистских масс.
Возьмем, к примеру, электрон из ускорителя на энергию два миллиона электрон-вольт, который вылетает со скоростью около 294 000 000 м/сек, или 0,98 с. Для него 1/√(1 — (98/100)) ~= 1/√(4/100) = 5. Таким образом, для покоящегося наблюдателя масса электрона в 5 раз больше массы покоя. (А вот другой способ получить этот результат. Кинетическая энергия электрона равна 2 млн. эв, а энергия, связанная с массой покоя, 0,5 млн. эв. Следовательно, этот электрон имеет кинетическую энергию, соответствующую 4 массам покоя, что вместе с первоначальной массой дает 5 масс покоя).
Фиг. 158. Фотография соударения очень быстрого электрона с неподвижным в камере Вильсона.
Эта зависимость от скорости проверялась отклонением очень быстрых электронов (β-лучей) электрическими и магнитными полями; результат превосходно совпал с предсказаниями. Другая проверка: соударение очень быстрых электронов с покоящимися электронами в камере Вильсона, которые не дают ожидаемой прямоугольной вилки. Зато измерение углов на фотографии фиг. 158 согласуется с предсказанием теории относительности для упругого столкновения массы 12,7 m и покоящейся массы m. Следы частиц искривлены, ибо все это происходило в сильном магнитном поле, перпендикулярном плоскости картинки (фиг. 159).
Фиг. 159. Измерения представленной на фиг. 158 фотографии.
Измерение кривизны дает импульс каждого из электронов после соударения и импульс налетающего электрона до соударения. Измерение углов подтверждает пропорцию этих импульсов. Если для вычисления масс воспользоваться формулой нерелятивистской механики (E = /mv и т. д.), предполагая упругое соударение, то масса налетающей частицы должна быть примерно в 4 раза больше массы частицы-мишени. Тем не менее следы выглядят как электронное соударение и мы не можем приписать двум электронам классические массы m и 4m. Поэтому попытаемся проверить релятивистскую механику с E = (m — m)∙с.
ИМПУЛЬС = mv и m = m/√(1 — (v/c))
Тогда все оказывается согласованным. Из величины магнитного поля и измерения кривизны находим:
ДО СОУДАРЕНИЯ
налетающий электрон имеет массу 12,7∙m и скорость 0,9969∙с.
Поскольку следы коротки и слабо искривлены, радиус кривизны измерить очень точно не удается. Поэтому импульс налетающей частицы, а следовательно, ее масса определяются с точностью до 6 %. Другими словами, -
Macca = 12,7∙m ± 6 % = 12,7∙m ± 0,8∙m .
ПОСЛЕ СОУДАРЕНИЯ
разлетающиеся частицы имеют массы 8,9∙m и 4,3∙m и скорости 0,9936∙с и 0,9728∙с,
где m — масса покоя электрона, а с — скорость света. До соударения полная масса была равна 13,7∙m (включая массу мишени), после соударения она стала 13,2∙m. В этом соударении масса сохраняется в пределах точности 6 %, подобно энергии, измеряемой теперь величиной mс.
Смысл изменения массы
Существует простая физическая интерпретация изменений массы: добавочная масса является массой, соответствующей кинетической энергии тела. Проверим это с помощью алгебры, воспользовавшись разложением радикала для достаточно малых скоростей в ряд:
= m + (1/2)∙m∙(v/c) + Пренебрежимо малые величины при малых скоростях
= Масса покоя + E/с
=Масса покоя + Macca, соответствующая кинетической энергии.
Максимальная скорость с
По мере роста скорости тела и приближения ее к скорости света ускорять тело становится все труднее и труднее — масса его приближается к бесконечности. Экспериментаторы, работающие с линейными ускорителями (которые разгоняют электрон по прямой), обнаруживают, что при высоких энергиях их «подопечные» приближаются к скорости света, но никогда не превосходят ее. При каждом последующем толчке электрон приобретает большую энергию (и, следовательно, большую массу), но становится лишь чуть-чуть быстрее (поэтому ускоряющие промежутки можно равномерно располагать вдоль пучка, что будет неким упрощением конструкции).
Рост массы до бесконечности при приближении к скорости света означает бесконечное «затруднение ускоряться». Наши попытки заставить тело двигаться быстрее остаются тщетными до тех пор, пока тело не достигнет очень больших скоростей, где приходится «карабкаться» по все более и более крутому склону к отвесной стене, когда скорость подходит к скорости света. Поэтому не следует удивляться предсказанию теории относительности, что никакое тело не может двигаться быстрее скорости света, ибо при попытке ускорить его до этой скорости мы сталкиваемся со все большей и большей массой и, следовательно, получаем все меньший отклик на действие ускоряющей силы.