Физика для любознательных. Том 2. Наука о Земле и - Страница 192


К оглавлению

192

111

Поскольку в этом задании вы не знаете массы Земли, то в своем ответе можете обозначить ее буквой М.

112

Объяснение термина «оценка» см. в гл. 11Интерлюдия. Приложение во арифметике», входит в т 1 настоящего издания), а также см. примечание в конце гл. 22 (стр. 293 и 294).

113

Из книги «People in Quandaries», New York, 1946.

114

Гл. 44Современная физика») входит в т. 3 настоящего издания.

115

Определение размеров атомов из рассмотрения процесса их столкновений дает различные результаты, так как при сильных столкновениях атомы как бы сплющиваются и их размеры уменьшаются. Поэтому при определении размеров с помощью таких косвенных измерений мы должны прибегать к некоторым теоретическим допущениям.

116

Гл. 5Связь между напряжением и деформацией») входит в т. 1 настоящего издания.

117

Превосходное обсуждение этих вопросов содержится в сообщении Джемса Б. Конанта (James В. Соnant, The Growth of the Experimental Sciences, Harvard, 1949). Более подробное обсуждение «тактики и стратегии науки» можно найти в книге того же автора (On Understanding Science).

118

Гл. 1Земное тяготение») входит в т. 1 настоящего издания.

119

Если бы Фауст имел в своем распоряжении соответствующее оборудование, он смог бы предложить вам микрофон, присоединенный к стеклянному столу, а также к усилителю и громкоговорителю. Если вы покатите стальной шарик по столу, то действительно услышите шумы, напоминающие хруст.

120

Мы можем даже показать, что если медный брусок потереть о другой медный брусок, крошечные частицы, невидимые простым глазом, переходят с одного бруска на другой. Никакими химическими методами это взаимопроникновение продемонстрировать, конечно, не удается. Однако его можно показать с помощью других методов, о чем вы узнаете в конце нашей книги.

121

Тот же метод «научного подхода» применяется некоторыми учеными в других областях, например в области общественных наук. Он оказывается полезным, если ему не следуют со слепым энтузиазмом — в последнем случае он может препятствовать прогрессу. Кроме того, мы не можем быть уверены в том, что метод, применимый в физике, окажется столь же плодотворным и в других областях науки.

122

С прекрасным примером решающего эксперимента мы встречаемся в истории оптики. Двести лет назад существовали две точки зрения на природу света: корпускулярная теория Ньютона и волновая теория Гука и Гюйгенса. Обе теории объясняли общие свойства поведения световых лучей, например отражение и преломление, но вместе с тем исследование второго явления — преломления — могло служить решающей проверкой того, какая из двух теорий правильна.

Когда световые лучи падают под углом на поверхность воды, их наклон изменяется (направление луча приближается к направлению нормали к поверхности воды). Это изменение направления луча на границе двух сред называется преломлением; оно было хорошо известно как свойство света на протяжении тысячелетий. Птолемей вывел приближенный закон для угла преломления, а Снеллиус установил точный закон преломления за 50 лет до того, как Ньютон написал свою «Оптику». Обе теории — и Ньютона и Гюйгенса — объясняли преломление света и обе предсказывали закон Снеллиуса:

А. Корпускулы света должны притягиваться водой по мере приближения к ее поверхности (подобно молекуле пара, возвращающейся в жидкость).

Тогда их количество движения изменится следующим образом:

1) вертикальная компонента количества движения возрастет (под действием сил притяжения);

2) горизонтальная компонента останется неизменной (из соображений симметрии). В результате направление потока корпускул в воде приблизится к нормали к ее поверхности, т. е. будет наблюдаться преломление. Из геометрических соотношений вытекает закон Снеллиуса.

При таком изменении количества движения корпускулы должны двигаться в воде быстрее, чем в воздухе.

Б. Согласно волновой теории, гребни падающих световых волн должны задерживаться; попадая на поверхность воды, они должны поворачиваться и распространяться в воде по направлению, лежащему ближе к нормали.

Отсюда следует, что световые волны должны распространяться в воде медленнее, чем в воздухе.

Сравнение скорости света в воде и в воздухе могло бы стать решающим экспериментом при проверке правильности этих теорий. Такой решающий эксперимент был произведен Фуко лишь в 1850 г — через полтора столетия после Ньютона, Гука и Гюйгенса. Фуко показал, что свет распространяется в воде медленнее, чем в воздухе. Таким образом, вопрос был решен не в пользу теории корпускул, но только не в пользу данной частной модели, т. е. корпускул, имеющих постоянную массу и движущихся в воде с возрастающими скоростью, количеством движения и энергией. Возьмем вместо этого корпускулы, которые имеют одну и ту же энергию в воздухе и в воде, но масса которые изменяется при их попадании в воду. Тогда мы сможем сформулировать теорию, которая предскажет закон Снеллиуса и согласно которой корпускулы будут двигаться в воде медленнее, чем в воздухе. В этом случае найти выход из положения было легко, хотя результат получался неправильный, однако почти всякая теория может пережить свое осуждение «решающим экспериментом», прибегнув к сложным усовершенствованиям или изменениям.

123

Даже современные стеклянные цилиндры имеют слегка конусообразную форму, за исключением тех случаев, когда для их изготовления используется специальный дорогостоящий процесс; поэтому если эксперименты «по проверке закона Бойля» дают отклонение от закона pV = const, то это обычно объясняют несовершенством цилиндров, а не особым поведением воздуха. Если воздух заменить другим газом, скажем СO, или органическими парами, то появляется истинное отклонение от закона Бойля (см. гл. 30).

192