Физика для любознательных. Том 2. Наука о Земле и - Страница 191


К оглавлению

191

102

Гл. 33Электростатика. Электрические заряды и поля») входит в т. 3 настоящего издания.

103

Расстояние между ними изменяется от величины, равной сумме радиусов орбит, до величины, равной их разности: 1400 млн. км — 770 млн. км (1400—770); отношение этих величин 3,5:1.Это вызывает возмущающее притяжение, меняющееся в отношении 1:12.

104

J. М. Кеуnes, Newton the Man, в кн. Newton Tercentenary Celebrations of The Royal Society of London, Cambridge, 1947.

105

Этот расчет был решающей проверкой великой теоретической идеи. Вы должны выполнить все арифметические действия очень точно, иначе это будет простой потерей времени. Ответы на два поставленных в задаче вопроса должны быть получены с тремя значащими цифрами (это потребует пяти десятичных порядков в значениях величин с размерностью м/сек). Вначале получите ответы в буквенных выражениях, без каких-либо сокращений, а затем — численный результат.

106

В задачах требуется очень приблизительный результат, дающий лишь общее понятие об относительных массах или величинах некоторых сил; точных арифметических вычислений не требуется, поэтому советуем учесть следующее:

A. Пользуйтесь алгебраическими выкладками до тех пор, пока это возможно.

Б. После этого подставьте арифметические величины, не сокращая их, и представьте результат со всеми коэффициентами. (Не сокращайте этот первый результат, а оставьте его нетронутым на тот случай, если вам понадобится к нему вернуться или потребуется его проверить.)

B. Перепишите «результат» пункта Б и сделайте грубую аппроксимацию, чтобы получить весьма приближенный ответ. Ниже даны три схемы аппроксимации:

а) Используйте грубые арифметические подсчеты. Это даст удовлетворительные результаты быстрее, нежели что-либо другое, если не считать специальных приемов и опыта. (Сведите все данные к степеням 2 или 10, а затем сокращайте. Помните: 2 ~= 10.)

б) Пользуйтесь таблицами логарифмов. Достаточны логарифмы с двумя десятичными знаками,

в) Используйте логарифмическую линейку. Делайте грубые прикидки для определения первого десятичного знака.

Если ваш результат больше или меньше верного в 1000 раз, то он бесполезен, если же только на 40 % за счет неточности в выкладках, то он дает полезные данные.

107

Гл. 10Колебания и волны») входит в т. 1 настоящего издания.

108

Гл. 10Колебания и волны») входит в т. 1 настоящего издания.

109

Гл. 39Радиоактивность») входит в т. 3 настоящего издания.

110

Вообразим себе такую схему. Предположим, что величина G медленно уменьшается в соответствии с показаниями «атомных» часов. Маятниковые часы, показывающие гравитационное время в прошедшие времена, должны были идти быстрее (такое заключение делается на основе вращения Земли или по атомным часам). Тогда Земля в прошедшие времена должна была бы вращаться медленнее (судя по маятниковым часам). Примем гравитационное время, показываемое маятниковыми часами, за относительный стандарт и будем наблюдать за изменениями времени в атомной шкале. (Ни одну из этих шкал времени нельзя считать истинной по сравнению с другой — только предубеждение заставляет нас считать, что атомное время более правильно и течет с постоянной скоростью.)

Представим себе, например, что соотношение между этими двумя шкалами времени «экспоненциальное», так что атомные часы по сравнению с маятниковыми удваивают свою скорость за триллион «маятниковых дней». Мы выбираем это одно из бесчисленного количества возможных соотношений просто для иллюстрации. Чтобы эта иллюстрация была еще проще, вообразим, что скользящая шкала, связывающая эти две системы часов, изменяется не плавно, а скачками, так что после каждого триллиона дней по маятниковым часам атомные часы внезапно удваивают свою скорость — вдвое чаще тикают за маятниковый день, чем прежде. (Такая схема скачков безнадежно маловероятна. Математические расчеты легче проводить как раз для случая гладкой экспоненциальной зависимости, которая может быть ближе к истине.) Тогда мы найдем, что для каждого триллиона дней, которые мы отсчитываем в прошлое по маятниковым часам, атомные часы работали бы вдвое медленнее, т е. за каждый маятниковый день было бы вдвое меньше тиканий атомных часов.

Если вести счет времени назад, начиная с настоящего времени, то первый триллион дней будет одним и тем же в обеих шкалах времени; для следующего триллиона маятниковых дней атомные часы будут работать вдвое медленнее и покажут только / триллиона дней и т. д. Если мы путешествуем в прошлое такими периодами в триллион дней по маятниковым часам, то соответственно пройдем:

ПО МАЯТНИКОВЫМ ЧАСАМ.

1 триллион дней + 1 триллион + 1 триллион +…

ПО АТОМНЫМ ЧАСАМ.

1 триллион дней + / триллиона + / триллиона +…

Во втором ряду никогда не получится больше 2 триллионов, хотя первый ряд растет до бесконечности. Таким образом, отсчитывая время по атомным часам, мы приходим к конечному начальному времени. (2 триллиона дней назад в нашем примере), а соответствующий интервал для маятниковых часов сдвигается до минус бесконечности.

В этом примере, если измерять время с помощью радиоактивных превращений или по вращению Земли (которое определяет звездный день), мы должны будем прийти к выводу, что Вселенная возникла примерно 2 триллиона лет назад, но мы никогда не смогли бы вернуться назад к началу Вселенной, отсчитывая маятниковые дня или солнечные годы.

191