Гл. 37 («Магнитные силы») входит в т. 3 настоящего издания.
Хотя при движении по орбите скорость Земли меняется, мы считаем ее постоянной на протяжении короткого времени эксперимента. На самом деле постоянство будет точным, так как любое изменение скорости Земли полностью компенсируется силой гравитационного притяжения Солнца, вызывающего эти изменения. На Земле в целом (например, в ее центре) мы не можем заметить никакого эффекта и видим разностный эффект в разных точках Земли, например приливы. Собственное вращение Земли приводит к заметным эффектам; маятник Фуко изменяет плоскость своего качания, а ускорение g на экваторе и полюсе оказывается разным и т. п. Однако там, где эти различия существенны, их можно учесть.
Гл. 2 («Полет снарядов. Геометрическое сложение: векторы») входит в т. 1 настоящего издания.
Первое утверждение проще, ибо оно принадлежит наблюдателю, который запустил ракету в момент t = 0 из состояния покоя.
Например, он в момент t = 0 выпускает пулю, летящую со скоростью 1000 м/ceк в направлении оси X. Тогда попадание пули в мишень, отстоящую в 3 м, можно записать как х = 3 м, у = 0, z = 0, t = 0,003 сек.
Так древнегреческие философы называли универсальное вещество, которое, по их мнению, заполняет все пространство за пределами атмосферы.
Эта аберрация в корне отличается от параллакса — кажущегося движения ближайших звезд на фоне удаленных. Аберрация тоже заставляет звезды двигаться, но она относится ко всем звездам и на порядок больше параллакса даже ближайших звезд. (Кроме того, аберрация звезды пропорциональна скорости Земли и отстает по фазе на три месяца от ее параллакса.)
Это произошло задолго до успешных «земных» экспериментов (~1600): Галилей описал первую попытку определить время распространения вспышки сигнального фонаря между вершинами двух гор. Наблюдатель ε посылал вспышку наблюдателю ε, который, увидев ее, немедленно посылал сигнал ε. Пока ε не натренировался, они получали для света конечную скорость. Но по мере того как они совершенствовали свою технику, скорость вырастала все больше и больше, до,) «бесконечности» — скорость света слишком велика, чтобы можно было измерить ее таким способом.
(~ 1700): Ньютон знал только измерение света, проведенное Ремером по спутникам Юпитера.
(1849): Успешный опыт Физо, в котором свет отражался удаленным зеркалом, а вращающееся зубчатое колесо пересекало луч, создавая вспышки и пропуская их при возвращении в следующий промежуток между зубцами. Его результат подтверждал астрономические наблюдения. Как этот, так и все последующие «земные» методы основывались на прерывании светового луча и сходны с методом измерения скорости пули- или электронов.
Результат: скорость света равна 300 000 000 м/сек.
Для этого требуются некоторые геометрические размышления (фиг. 148). Чтобы пролететь 40 м поперек клетки, птица должна пролететь 50 м по гипотенузе, но потом за это время ее снесет на 30 м. Простейший ответ 8 + 8 сек дает слишком мало.
Если вы еще не убеждены и чувствуете, что путь в оба конца должен усредняться, проделайте мысленный эксперимент с ветром, который дует быстрее, скажем 6 м/сек. Тогда птица вообще не сможет лететь против ветра и время будет бесконечным.
Последняя проверка (Таунс, 1958), проведенная с помощью микроволн в резонансной полости, дала нулевой результат, тогда как авторы могли заметить скорость, составлявшую /орбитальной скорости Земли.
Ведь есть же случаи, где 2 + 2 не равно 4. При сложении двух векторов 2 + 2 дает что угодно между 0 и 4. Литр спирта и литр воды при смешивании дают меньше 2 литров. В изображенной на фиг. 151 электрической цепи все сопротивления R одинаковы, но эффект нагревания не складывается. Два тока, выделяющие по 2 дж/сек, складываются в один, выделяющий 8 дж/сек. Во все века, изучая природу, ученые занимались поисками и отбором тех величин, которые просто складываются наподобие массы жидкости (но не объема) и выделения током меди на электродах (но не нагревания).
Суть таких «исключений» в том, что все они относятся к случаю, когда при сложении происходит взаимодействие. Величины уже не являются чем-то независимым.
Это одно из приложений великого «принципа соответствия» Бора: в любом предельном случае, где новые требования тривиальны (в нашем случае при малых скоростях), новая теория должна сводиться к старой.
Эти преобразования могут показаться более разумными, если вы дите, что они представляют вращение пространственно-временных осей. См. стр. 636.
Когда опыт привел нас к вере в правильность первого и второго законов Ньютона, то на самом деле просто нам здорово повезло в том смысле, что мы очутились в лаборатории, которая представляет собой практически инерциальную систему. Если бы мы экспериментировали на пляшущем на волнах корабле, то вряд ли могли бы сформулировать столь простые законы.
Более подробно все это изложено во многих книгах. (Существует простое изложение теории относительности, например: А. Эйнштейн, Сущность теории относительности, ИЛ, 1955 и К. Дьюрелл, Азбука теории относительности, изд-во «Мир», изд. второе, 1970.— Прим. ред.)