Затем находил в записях Браге время, в точности соответствующее тому, которое прошло с данного момента за один марсианский год. (Марсианский год, т. е. время, в течение которого Марс совершал полный оборот по своей орбите, был точно известен из записей, которые велись в продолжение столетий.) Теперь Кеплер знал, что Марс находится в этом же самом положении М и что SM имеет то же направление. К этому времени Земля успевала перейти в положение Е на своей орбите. Произведенная Тихо запись положения Марса на фоне звездного неба давала Кеплеру новое направление, ЕМ, а положение Солнца давало ему направление ES. Он мог определить углы треугольника SEM следующим образом: зная направления ЕМ и ЕМ (отмеченные на небесной звездной сфере), он мог вычислить угол А между ними. Зная направления ЕS и ES, он мог вычислить образуемый ими угол B. Затем на диаграмме он мог выбрать две точки, изображающие S и М, и определить положение Земли Е, из концов базы SM провести прямые под углами А и В и найти их пересечение Е. Спустя один марсианский год он мог определить направления ЕМ и ЕS из записей Тихо Браге и найти потом Е на своей диаграмме. Таким образом, Кеплер, начав с точек S и М, мог определить точки Е, Е, Е…, что позволяло при достаточно большом числе точек определить форму орбиты. Зная теперь истинную орбиту Земли, он мог провести исследование в обратном порядке и определить форму орбиты Марса.
Он убедился, что орбиту Земли можно считать кругом со слегка смещенным центром, т. е. несколько напоминающей овал; но орбита Марса не имела сходства с кругом, она представляла собой вполне определенный овал, или же, как он считал вначале, имела яйцевидную форму; Кеплер все еще не мог найти ее математическое выражение.
Переменная скорость планет. Второй закон
Изучая движение Земли в пространстве, Кеплер заметил, что она движется по своей орбите неравномерно, быстрее зимой, чем летом. Он стал искать закон, по которому происходит изменение скорости и который мог бы заменить искусственный прием введения эквант. На мысль о существовании такого закона наводила прежняя гипотеза об импульсе, получаемом планетами от Солнца.
Кеплер считал, что движение должно поддерживаться силой, поэтому у него возникло представление о некоем «плече», идущем от Солнца к каждой планете и толкающем планету вдоль орбиты, и чем дальше расстояние, тем слабее должен быть толчок. Кеплер пытался (с помощью сложной геометрической схемы) сложить действия таких толчков от расположенного эксцентрично Солнца и открыл простой закон: радиус-вектор, проведенный от Солнца к планете, описывает одну и ту же площадь за равные промежутки времени. Этот радиус-вектор не вращается вокруг Солнца с постоянной скоростью (как хотелось бы Птолемею), но в его движении имеется некоторое постоянство — постоянная скорость прохождения одной и той же площади (Птолемею, вероятно, понравилось бы такое соотношение).
Рассмотрим, чему будут равны эти площади для равных промежутков времени, скажем за каждый месяц. Когда планета находится далеко от Солнца, радиус-вектор будет проходить за месяц длинный узкий треугольник; по мере приближения планеты к Солнцу треугольники будут становиться короче и шире — планета будет двигаться быстрее. Позднее, когда Кеплер уже знал форму орбиты Марса, он применил то же правило и нашел, что оно справедливо и для Марса. Таким образом, он получил простой закон, определяющий скорости планет: каждая планета движется вокруг Солнца с такой скоростью, что радиус-вектор, проведенный от Солнца к планете, описывает равные площади за равные промежутки времени. Кеплер высказывал лишь смутные догадки о «причине» такого явления, считая его результатом влияния Солнца, возможно магнитного происхождения; но он ценил этот закон за его простоту и четкость и пользовался им при дальнейших исследованиях. Мы называем этот закон вторым законом Кеплера. Первый закон Кеплера, открытый им вскоре после этого, определяет истинную форму орбит планет.
Орбита Марса. Первый закон
Начертив орбиту Марса (по сорока тщательно вычисленным точкам), Кеплер попытался дать математическое выражение для ее овальной формы. Он испытывал бесконечные затруднения, одно время даже говорил, что почти сходит с ума от тех трудностей, которые ему приходится испытывать. Желая получить финансовую поддержку, он писал императору в присущем ему напыщенном стиле: «Торжествуя победу над Марсом и приготовляя для него, как для побежденного, тюремные своды таблиц и оковы эксцентриков, я слышу то там, то тут шепот, что моя победа напрасна и что война бушует снова. Так как враг остался в доме, презренный пленник разорвал все цепи уравнений и вырвался из тюрьмы таблиц».
Фиг 80. Определение орбиты Марса по Кеплеру.
Фиг. 81. Солнечная система с окружающими Солнце эллиптическими орбитами.
Наконец, Кеплер нашел истинную орбиту Марса; она была заключена между эксцентрическим кругом, который был слишком велик по сравнению с ней, и вписанным внутрь круга эллипсом, который был слишком узок. И круг и эллипс расходились с наблюдениями, круг на +8' в некоторых участках орбиты, а внутренний эллипс на —8'. Кеплер внезапно понял, что орбита должна представлять собой эллипс, в одном из фокусов которого находится Солнце.