Убедившись в правильности своего предположения, он был так восхищен, что украсил свой чертеж изображением победоносной Астрономии на триумфальной колеснице, чтобы подчеркнуть значение полученного им доказательства (фиг. 82).
Наконец-то он определил, истинную орбиту Марса. Подобное же правило оказалось справедливым для Земли и других планет. В этом и состоит первый закон Кеплера, т. е. каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.
Фиг. 82. Диаграмма Кеплера из его книги о Марсе.
Третий закон
Таким образом, с помощью таблиц Тихо Браге, благодаря бесстрашию, уму и неустанной работе Кеплер вывел два великих «закона». Он продолжал размышлять над одним из тех вопросов, которые интересовали его и ранее: какова связь между размерами орбит планет и длительностью их периодов обращения? Теперь ему были известны радиусы орбит, а периоды их обращения были известны с давних пор. (Как предполагали древние греки, планеты с большими периодами обращения имеют бóльшие орбиты.) Он был уверен, что между радиусом планеты и ее периодом обращения должно существовать определенное соотношение. Кеплер делал много попыток найти такое соотношение, но большинство попыток было безрезультатно, как и его планетная система из пяти правильных многогранников, другие же носили мистический характер.
К счастью, связь между радиусами и периодами обращения действительно существует, и Кеплеру посчастливилось испытать радость открытия. Он нашел, что отношение R/T одинаково для всех планет (здесь R — средний радиус орбиты планеты, а Т — период ее обращения, см таблицу).
Фиг. 84. Орбита Земли (изображена в соответствующем масштабе).
Фиг. 85. Соотношение между радиусом и «периодом обращениям для орбит различных планет.
Фиг. 86. Период обращения планеты.
Кеплер вновь был счастлив. Ему удалось вырвать у природы ее дивную тайну. Вот что он писал по этому поводу:
...«То, что я предсказывал двадцать два года назад, то, во что я твердо верил задолго до того, как увидел «гармонии» Птолемея, то, что обещал моим друзьям в заглавии этой книги, в заглавии, которое я ей дал прежде, чем уверился в моем открытии, то, что я уже пытался искать шестнадцать лет назад и ради чего присоединился к Тихо Браге и переехал в Прагу, то, во имя чего я посвятил лучшие годы моей жизни астрономическим наблюдениям, — мне наконец удалось понять и объяснить, и успех мой превзошел даже самые оптимистические ожидания. Не прошло еще и восемнадцати месяцев с тех пор, как я заметил, наконец, первый проблеск света. Минуло всего три месяца с тех пор, как забрезжил рассвет, и несколько дней, как засверкало ничем не затуманенное восхитительное Солнце. Ничто не удерживает меня… жребий брошен, написана книга, которая будет прочитана либо теперь, либо потомками. Это меня не беспокоит; она может ждать своего читателя хоть целое столетие — ведь бог ждал шесть тысяч лет, чтобы увидели его творение».
Законы Кеплера
Потребовались годы вычислений, измерения, размышления и снова вычисления, — пока Кеплер не обнаружил среди прочих бесценных для него «гармоний» три великих закона:
ПЕРВЫЙ ЗАКОН. Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.
ВТОРОЙ ЗАКОН. Радиус-вектор (линия, соединяющая Солнце и планету) описывает за равные промежутки времени равные площади.
ТРЕТИЙ ЗАКОН. Квадраты периодов обращения планет пропорциональны кубам их средних расстояний от Солнца. (Или отношение R/T одинаково для всех планет.)
Первые два закона можно было проверить с помощью имеющихся данных. Таким образом, Кеплер был уверен, что его догадка правильна. Для проверки третьего закона нужны были лишь относительные значения радиусов орбит планет.
Значение трудов Кеплера огромно. Он открыл законы, которые затем Ньютон связал с законом всемирного тяготения. Конечно, сам Кеплер не отдавал себе отчета в том, к чему приведут его открытия. «Он не занимался утомительными поисками эмпирических правил, которые в будущем должен был привести к рациональному виду Ньютон. Он искал первопричины, математические гармонии, возникавшие у творца при сотворении мира». Кеплер не мог объяснить, чем обусловлено существование эллиптических орбит, но восхищался тем, что они существуют.
Вывод третьего закона
Вывод третьего закона сводился к угадыванию числового соотношения, которое было бы справедливо для нескольких пар чисел. Пытаясь удовлетворить определенному количеству данных (в рассматриваемом случае значениям Т и R для шести планет), можно сделать много неудачных попыток, и из подобных попыток, удовлетворяющих Т и R для шести планет, многие оказываются неверными в применении к седьмой планете (Урану, открытому позже). В свою очередь, успешные попытки для семи планет неверны для восьмой планеты (Нептуна). Привлечение все большего числа данных может устранить «неверные» попытки и оставить лишь «правильную». Но в каком смысле эта догадка «правильная»?