Некоторые верят, что в основе вещей, которые мы наблюдаем в природе, лежит некая абсолютная истина. Кеплер и Ньютон, вероятно, думали так же. Другие считают, что верное правило это просто?
а) то, что имеет наиболее общее применение (например, для наибольшего числа планет).
В этом смысле предположение Кеплера о том, что отношение R/Tпостоянно для всех планет, правильно, так как оно справедливо и для других планет, которые были открыты позднее, и для других систем, например для спутников Юпитера. Его правило пяти правильных многогранников было неверно, так как не соответствовало данным для шести известных планет, и оказывалось совершенно несостоятельным для случая более шести планет.
Утверждают также, что верен закон, который
б) наилучшим образом соответствует теории, связывающей воедино огромное многообразие наших знаний о природе.
Если эта теория была создана только для решения какой-либо частной задачи, как рабочая гипотеза, то закон (б) становится бессмыслицей — в этом случае он лишь означает, что данный закон верен только потому, что согласуется с теорией, специально созданной в предположении, что этот закон верен. Мы называем такую теорию теорией «ad hoc». Если же, однако, теория связывает данную проблему с другой областью науки, то закон (б) служит ей убедительной рекомендацией.
Ньютон, строя догадки о существовании всемирного тяготения, создал теорию, связывающую падение тел, движение Луны и движение планет с приливами и отливами и т. д. Он показал, что третий закон Кеплера (как и другие два его закона) с необходимостью следуют из этой теории. Таким образом, закон R/T можно считать «верным» согласно обоим определениям: и по общей применимости, и по согласию с теорией. Он мог оказаться «неверной» догадкой, ожидающей, подобно закону «пяти правильных многогранников», большего количества данных, чтобы быть опровергнутым, или теории, которая не могла бы его «предсказать».
Воображаемая «Задача Кеплера»
Чтобы судить о том, сколь сложно исследование, подобное тому, которое выполнил Кеплер, попробуем решить аналогичную задачу, пользуясь воображаемыми данными и воображаемыми соотношениями. Предположим, что вы придумали некую задачу и вам известна схема, по которой вы ее составили. Предложите мне найти эту схему. Вы предоставляете в мое распоряжение следующие данные
Вы знаете схему, так как сами ее придумали. (Эта система не подчиняется закону обратной пропорциональности квадрату расстояния, «планеты» не реальные!) Действительно, вы получите Т в соответствии с выбранным соотношением: T = R + 2. Таким образом, если будет открыта новая планета D с R = 5, то для нее Т будет равно 5 + 2, т. е. 27. Предположим, что вы сообщили мне данные для планет А, В и С (а данные для D попридержали).
В поисках закона я пытаюсь найти такую алгебраическую комбинацию T и R, которая была бы одинаковой для каждой из этих планет. Начиная с планет А и B, я замечаю, что T/R = 3/1 для А и 6/2 для В, т. е. в обоих случаях это отношение одинаково. Надеясь, что нашел правильный закон, т. е. что T/R для всех планет одно и то же, я нахожу это отношение для планеты С. В этом случае оно равно 18/4, т. е. не равно первым двум. Поэтому я должен отвергнуть первую догадку. Пробуя другие комбинации, я нахожу еще несколько таких, которые дают одинаковые отношения для А и В, но не годятся для планеты C. Наконец, я нахожу, что соотношение между T и R будет одинаково для планет А и В, если я разделю 8 на R, прибавлю R, умноженное на 7, и вычту T, т. е. нахожу комбинацию 8/R + 7R — Т.
Для планеты А получим: 8/1 + 7 x 1–3 = 12.
Для планеты В получим: 8/2 + 7 x 2–6 = 12.
Для планеты С получим: 8/4 + 7 x 4 — 18 = 12, т. е. то же самое.
Итак, по-видимому, я нашел общий закон, которому подчиняются планеты А, В и С. Считая, что этот закон справедлив, я намереваюсь его опубликовать, но тут вы сообщаете данные о планете D: R = 5 и T = 27. Применяя свое правило к планете D, я получаю: 8/5 + 7x5 — 27 = 9,6.
Выяснив, что ваши данные не могут содержать ошибки, достаточно большой, чтобы объяснить расхождение между значениями 9,6 и 12,0, и начинаю все сначала. Если я достаточно терпелив и мне сопутствует удача, я могу прийти к следующей схеме: прибавить 2 к R и разделить полученный результат на Т. Тогда для всех четырех планет А, В, С и D получится один и тот же ответ, равный 1,000. Это позволяет думать, что найден правильный закон. Дальнейшие проверки при наличии большего числа данных подтверждают его правильность, и если этот закон будет находиться в соответствии с некой общей теорией, то я могу считать, что моя задача решена. Приведем таблицу, иллюстрирующую ход решения задачи.
В последний момент была открыта еще одна «планета», е, таких малых размеров, что ее раньше не замечали. Ее данные тоже удовлетворяют окончательному правилу (в нашем примере в этом нет ничего удивительного, так как мы сами подогнали ее данные, заранее зная, какому правилу они должны удовлетворять) и находятся в противоречии с первыми попытками. Заметим, однако, что они почти точно соответствуют второй попытке, приводя к результату, равному 12,67. Если бы данные для планеты е были известны, когда я работал над своим вторым правилом, я мог бы поддаться искушению и решить, что 12,67 — значение, достаточно близкое к 12,00, и объяснить различие этих двух значений ошибкой эксперимента.