Задача 1. Вычитание векторов
При изучении движения планет нам будет необходимо производить вычитание векторов. Эта задача дается вам для практики.
1. Обычное (арифметическое) вычитание. Предположим, что мы хотим из 5 вычесть 2. Это можно сделать различными способами:
а) можно сказать; 2, вычтенное из 5, дает 3, или то же самое, но другими словами: 5–2 равно 3;
б) можно изменить знак с + 2 на —2 и задать дополнительный вопрос: сколько будет 5 + (—2)?;
в) можно подойти к задаче по-детски и спросить: сколько мы должны добавить к 2, чтобы получилось 5?
Последний прием дает ключ к вычитанию векторов (или нахождению разности двух векторов).
2. Векторы. Предположим, что мы имеем «старый» и «новый» векторы и хотим найти их разность. Мы опрашиваем. «.Какой вектор нужно добавить к «старому», чтобы получить новый» вектор?» [Эта задача подобна вопросу пункта (в), однако теперь требуется выполнить геометрическое сложение.]
а) Если оба вектора, старый вектор 2 и новый вектор 5, направлены на восток, то какова будет их разность? Какой вектор нужно добавить к вектору 2, чтобы получился вектор 5? Изобразите это:
б) Если векторы (старый вектор А и новый вектор В) направлены в разные стороны так, как это показано на схеме
то что же тогда будет их разностью? «Что должно быть добавлено к вектору А, чтобы получился вектор В?» Покажите это стрелками для каждого случая. В каждом случае мы должны вычесть А из В.
в) Если векторы не приложены к одной и той же точке, вы должны сначала перенести один из векторов или оба в общую точку. После этого найдите, вновь пользуясь стрелками, разность В — А для каждого случая, изображенного здесь.
Кеплеровы жесткие «рычаги», предназначенные для осуществления движения планет, вскоре оказались ненужны: новое учение Галилея представило всю проблему в другом свете. По мнению Галилея, движущееся тело, предоставленное самому себе, будет продолжать двигаться; он предложил остроумный мысленный эксперимент для обоснования такого взгляда. Поколением позже Ньютон выразил то же самое посредством некоторого рабочего правила, а именно своего первого закона:
Каждое тело остается, в состоянии покоя или прямолинейного движения с постоянной скоростью, если на него не действует сила.
Позже Ньютон более четко представил эту расплывчатую идею о движении с помощью определенного количества движения, которое можно рассчитать путем умножения массы на скорость, и сформулировал второй закон:
Действующая сила изменяет количество движения в направлении своего действия.
СКОРОСТЬ ИЗМЕНЕНИЯ КОЛИЧЕСТВА ДВИЖЕНИЯ ПРЯМО ПРОПОРЦИОНАЛЬНА ДЕЙСТВУЮЩЕЙ СИЛЕ.
Это было эквивалентно следующему утверждению:
Произведение массы на ускорение пропорционально результирующей силе.
В период между Галилеем и Ньютоном эти новые представления о движении (к которым на ощупь шли философы далекого прошлого и которые были частично установлены Леонардо да Винчи много раньше Галилея и Декартом после него) зрели для того, чтобы сыграть свою роль в астрономии. Члены только что созданного Королевского общества, которые вскоре приветствовали пришедшего в их ряды Ньютона, горячо обсуждали законы Кеплера, задавая совершенно другие вопросы почему. Они больше не беспокоились о внешнем воздействии, направляющем планеты вдоль их траекторий. Галилей убедил их, что нет никакой необходимости в подталкивающей силе; планеты будут продолжать двигаться сами по себе, если их оставить в покое, подобно куску льда на поверхности замерзшего пруда или пуле в пространстве.
Ученые отбросили представление о кеплеровых рычагах. Вместо них были введены внутренние силы, заставляющие планеты двигаться по искривленным орбитам. Такие силы создают усилие «поперек движения» планеты и будут сообщать ей импульс в новом направлении. Что это за силы? Новый вопрос повис в воздухе.
Гук, Гюйгенс и Ньютон взялись за его решение.
Считая орбиты планет примерно круговыми и опираясь на третий закон Кеплера, они предположили, что между Солнцем и планетами существует взаимное притяжение, которое уменьшается обратно пропорционально квадрату расстояния между ними (см. следующую главу). Но может ли эта сомнительная и совершенно непонятная сила заставить планеты следовать по эллиптическим орбитам в соответствии с первым и вторым законами Кеплера?
Разобраться в этом было непосильной задачей для всех, кроме Ньютона.
Задача потребовала ясной формулировки законов движения и искусного математического аппарата. Ньютон не только решил эту задачу, но и превратил это решение в основу хорошей теории.
Прежде чем изучать его работы, следует распространить обсуждение вопроса о силе и движении на случай новых сил, искривляющих траекторию движущихся тел. Вы уже встречались с аналогичной ситуацией при рассмотрении полета снарядов, когда вследствие силы тяжести к горизонтальному движению добавляется вертикальная составляющая и в результате траектория становится криволинейной. Это ускоренное движение кажется более легким для понимания. Осмелимся сказать: «кажется более естественным», нежели равномерное движение по круговой орбите с постоянной скоростью.