Физика для любознательных. Том 2. Наука о Земле и - Страница 55


К оглавлению

55

...

Задача 1. Вычитание векторов

При изучении движения планет нам будет необходимо производить вычитание векторов. Эта задача дается вам для практики.

1. Обычное (арифметическое) вычитание. Предположим, что мы хотим из 5 вычесть 2. Это можно сделать различными способами:

а) можно сказать; 2, вычтенное из 5, дает 3, или то же самое, но другими словами: 5–2 равно 3;

б) можно изменить знак с + 2 на —2 и задать дополнительный вопрос: сколько будет 5 + (—2)?;

в) можно подойти к задаче по-детски и спросить: сколько мы должны добавить к 2, чтобы получилось 5?

Последний прием дает ключ к вычитанию векторов (или нахождению разности двух векторов).

2. Векторы. Предположим, что мы имеем «старый» и «новый» векторы и хотим найти их разность. Мы опрашиваем. «.Какой вектор нужно добавить к «старому», чтобы получить новый» вектор?» [Эта задача подобна вопросу пункта (в), однако теперь требуется выполнить геометрическое сложение.]

а) Если оба вектора, старый вектор 2 и новый вектор 5, направлены на восток, то какова будет их разность? Какой вектор нужно добавить к вектору 2, чтобы получился вектор 5? Изобразите это:



...

б) Если векторы (старый вектор А и новый вектор В) направлены в разные стороны так, как это показано на схеме



...

то что же тогда будет их разностью? «Что должно быть добавлено к вектору А, чтобы получился вектор В?» Покажите это стрелками для каждого случая. В каждом случае мы должны вычесть А из В.

в) Если векторы не приложены к одной и той же точке, вы должны сначала перенести один из векторов или оба в общую точку. После этого найдите, вновь пользуясь стрелками, разность В — А для каждого случая, изображенного здесь.


Кеплеровы жесткие «рычаги», предназначенные для осуществления движения планет, вскоре оказались ненужны: новое учение Галилея представило всю проблему в другом свете. По мнению Галилея, движущееся тело, предоставленное самому себе, будет продолжать двигаться; он предложил остроумный мысленный эксперимент для обоснования такого взгляда. Поколением позже Ньютон выразил то же самое посредством некоторого рабочего правила, а именно своего первого закона:

Каждое тело остается, в состоянии покоя или прямолинейного движения с постоянной скоростью, если на него не действует сила.

Позже Ньютон более четко представил эту расплывчатую идею о движении с помощью определенного количества движения, которое можно рассчитать путем умножения массы на скорость, и сформулировал второй закон:

Действующая сила изменяет количество движения в направлении своего действия.

СКОРОСТЬ ИЗМЕНЕНИЯ КОЛИЧЕСТВА ДВИЖЕНИЯ ПРЯМО ПРОПОРЦИОНАЛЬНА ДЕЙСТВУЮЩЕЙ СИЛЕ.

Это было эквивалентно следующему утверждению:

Произведение массы на ускорение пропорционально результирующей силе.

В период между Галилеем и Ньютоном эти новые представления о движении (к которым на ощупь шли философы далекого прошлого и которые были частично установлены Леонардо да Винчи много раньше Галилея и Декартом после него) зрели для того, чтобы сыграть свою роль в астрономии. Члены только что созданного Королевского общества, которые вскоре приветствовали пришедшего в их ряды Ньютона, горячо обсуждали законы Кеплера, задавая совершенно другие вопросы почему. Они больше не беспокоились о внешнем воздействии, направляющем планеты вдоль их траекторий. Галилей убедил их, что нет никакой необходимости в подталкивающей силе; планеты будут продолжать двигаться сами по себе, если их оставить в покое, подобно куску льда на поверхности замерзшего пруда или пуле в пространстве.

Ученые отбросили представление о кеплеровых рычагах. Вместо них были введены внутренние силы, заставляющие планеты двигаться по искривленным орбитам. Такие силы создают усилие «поперек движения» планеты и будут сообщать ей импульс в новом направлении. Что это за силы? Новый вопрос повис в воздухе.

Гук, Гюйгенс и Ньютон взялись за его решение.

Считая орбиты планет примерно круговыми и опираясь на третий закон Кеплера, они предположили, что между Солнцем и планетами существует взаимное притяжение, которое уменьшается обратно пропорционально квадрату расстояния между ними (см. следующую главу). Но может ли эта сомнительная и совершенно непонятная сила заставить планеты следовать по эллиптическим орбитам в соответствии с первым и вторым законами Кеплера?

Разобраться в этом было непосильной задачей для всех, кроме Ньютона.

Задача потребовала ясной формулировки законов движения и искусного математического аппарата. Ньютон не только решил эту задачу, но и превратил это решение в основу хорошей теории.

Прежде чем изучать его работы, следует распространить обсуждение вопроса о силе и движении на случай новых сил, искривляющих траекторию движущихся тел. Вы уже встречались с аналогичной ситуацией при рассмотрении полета снарядов, когда вследствие силы тяжести к горизонтальному движению добавляется вертикальная составляющая и в результате траектория становится криволинейной. Это ускоренное движение кажется более легким для понимания. Осмелимся сказать: «кажется более естественным», нежели равномерное движение по круговой орбите с постоянной скоростью.

55