Физика для любознательных. Том 2. Наука о Земле и - Страница 56


К оглавлению

56


Фиг. 100.


Ускорение тела, движущегося по окружности

Рассмотрим планету, движущуюся по окружности (камень на веревке, или самолет, или атом, фиг. 101). Будут ли они иметь ускорение? Если нет, то нам трудно будет отыскать действующую на них результирующую силу, но тогда почему они не движутся вперед по прямой? Так все же не имеет ли планета ускорения' Конечно, ускорение вдоль направления ее движения отсутствует, ведь мы выбрали случай движения с постоянной скоростью. Может быть, имеется ускорение, направленное поперек движения планеты, перпендикулярно ему?



Попытаемся нарисовать векторы, с помощью которых можно было бы рассмотреть изменение (вектора) скорости. Пусть тело Р перемещается по окружности радиусом R с постоянной скоростью v, представляющей абсолютную величину вектора скорости тела Р. Направление скорости совпадает с направлением перемещения тела в каждый момент времени. В точке А вектор скорости тела v направлен, как это показано на фиг. 102, по касательной. Если тело движется с постоянной скоростью, то в точках А и В величина вектора скорости v будет одной и той же, но направление будет различным, оба вектора не идентичны. Между точками А и В происходит изменение скорости. (А вследствие этого и ускорение, а поэтому… продолжая эти рассуждения, мы доберемся до планетной астрономии.) Для определения «ускорения» рассчитаем изменение скорости и поделим его на соответствующий интервал времени. Такая процедура предусматривает вычитание векторов для нахождения изменения скорости, что уже было сделано в задаче 1 в начале этой главы.



Фиг. 102. Векторы скорости.


Вывод формулы а = v/R.

По мере движения тело Р изменяет свою скорость от (v вдоль АТ) до (v вдоль BT'). Для определения изменения скорости построим векторную диаграмму. Перенесем эти два вектора в общую точку X и проведем линию XY, представляющую вектор скорости v в точке А, и линию XZ, представляющую вектор скорости v в точке В.

Тогда XY будет «старая скорость», a XZ — «новая скорость». Каково же изменение скорости? Какой вектор следует добавить к старому вектору скорости для получения нового вектора скорости?

Такое изменение показано с помощью отрезка YZ, представляющего собой вектор и обозначенного Δv на фиг. 103.



Фиг. 103. Изменение скорости.


Тогда (Старый вектор v) + Δv путем сложения векторов дает (Новый вектор v).

Чтобы увидеть, куда направлен вектор Δv, изобразим заново первоначальный рисунок, но таким образом, чтобы векторы v сместились вдоль своих направлений до совмещения их точек приложения в точке С (фиг. 104).



Фиг. 104. Направление изменения скорости.


Тогда мы можем рассматривать точку С в качестве X, провести из этой точки старый вектор v и новый вектор v и провести также вектор Δv. Вектор Δv параллелен линии СО, проведенной из точки С в центр круга О. Если поместить точку В очень близко к А, то Δv будет направлен по радиусу от АВ к центру. Вектор Δv — это вектор скорости, направленный к центру круга.

Ускорение возникает только при изменении скорости. Рассчитаем это ускорение путем деления величины изменения скорости Δv на интервал времени Δt, за который это изменение происходит. Время Δt равно времени прохождения телом Р расстояния по орбите между точками А и В со скоростью v. Фактически скорость v есть дуга

. Для выражения Δvt через v и R и т. д. мы вынуждены обратиться к геометрии, открытой современниками Ньютона. Соединим А и В хордой АВ‾. Вся хитрость состоит (как это часто делается для решения геометрических задач) в добавлении одной вспомогательной линии, в данном случае хорды АВ‾.

Рассмотрим теперь подобные треугольники на реальном рисунке и векторной диаграмме скоростей (фиг. 103). Радиусы ОА и ОВ на реальном рисунке образуют небольшой угол Е. Векторы скорости направлены по касательным перпендикулярно радиусам так, что вектор старой скорости v и вектор новой скорости v образуют тот же маленький угол Е. Тогда на реальной картинке мы имеем треугольник ОАВ с равными сторонами R и R, образующими угол Е; на векторной диаграмме имеется треугольник XYZ с равными сторонами v и v, образующими тот же угол Е. Поэтому треугольники ОАВ и XYZ подобны. Значит, должно иметь место следующее соотношение:

...

(Короткая сторона, Δv / Одна из равных сторон, v) = (Короткая сторона, АВ / Одна из равных сторон, R)

в некотором треугольнике Δv/v = AB‾/R… в реальном треугольнике Δv = vAB‾/R

56