Физика для любознательных. Том 2. Наука о Земле и - Страница 57


К оглавлению

57

Теперь мы можем рассчитать «ускорение»:

УСКОРЕНИЕ = Δvt = (vAB‾/R)/Δt = (v/R)∙(AB‾/Δt)

Для дальнейшего нам необходимо установить, что такое AB‾/Δt.

Что представляет собой [(хорда AB‾), деленная на (время движения от А до B)]? Мы знаем, что такое дуга

. Это отношение (расстояние)/(время) на участке орбиты от А до B, т. е. скорость v. Но для очень короткой дуги, когда В близко к А, криволинейная дуга 
очень близка к хорде AB‾.

Посмотрите на серию картинок, показанных на фиг. 105.



По мере сближения А и В дуга

и хорда AB‾ становятся все меньше, в то же время уменьшается и различие между ними. Говоря математическим языком, мы приближаемся к «пределу», когда В совпадает с А. Мы никогда не достигаем этого предела, но мы можем к нему приблизиться настолько, насколько захотим, и сделать различие между дугой и хордой настолько малым, насколько захотим.

Однако мы не только можем сделать разность

 — AB‾ пренебрежимо малой — мы можем сделать пренебрежимо малым отношение (разность/хорда) или (
 — AB‾)/AB‾. Это приводит к тому, что
/AB‾ становится очень близким к единице. Таким образом, мы можем сказать, что при большом расстоянии между А и В дуга немного больше хорды, при малом расстоянии дуга примерно равна хорде, а при еще меньшем расстоянии дуга почти равна хорде. При сколь угодно малом расстоянии в пределе дуга равна хорде. Математики предпочитают описывать этот предел так: LIm(дуга/хорда) = 1. Теперь мы хотим определить ускорение в некоторый момент времени, когда В и А практически совпадают. Мы не собираемся определять значение этой величины, усредненное по большому расстоянию. Мы хотим знать предел ускорения, когда В совпадает с А. Таким образом, мы говорим: дуга = хорда, 
 — AB‾. Тогда

Дугаt = Хордаt, или

= AB‾/Δt в пределе.

Следовательно,

Ускорение = Δv/Δt = (v/R)∙AB‾/Δt = (v/R)∙(v), в пределе (v/R)∙

t

так как

есть v. Тогда ускорение Δv/Δt = (v/R)∙(v) или v/R

или (Скорость на орбите)/(Радиус орбиты)

Это соотношение ускорение — v/R очень важно. Мы будем использовать его в теории движения планет, при изучении движения электронов, при изготовлении масс-спектрографов и конструировании циклотронов — везде, где мы сталкиваемся с движением по орбите. Было бы очень важно повторить для себя вывод этого соотношения и поверить в его значение. Поняв, как это делается, вы можете сократить вывод, ограничившись коротким объяснением, двумя эскизами и несколькими алгебраическими выражениями.


Два важных вопроса

Полученный нами результат, ускорение = v/R, вызывает два вопроса:

1. Каким образом может движущееся тело иметь ускорение, но не двигаться быстрее или же не перемещаться к центру круга?

2. Не нужна ли сила для ускорения тела в направлении его движения в соответствии с соотношением F = Ma. He действует t ли на массу М, движущуюся по окружности, сила М∙v/R.

Оба эти вопроса являются выражением тех, реальных трудностей, которые возникли сразу же, как только люди оказались перед необходимостью объяснить движение планет по орбитам. Ответ на вопрос 2 следует из эксперимента: «Да, каждое реальное движение по окружности требует наличия реальной силы, направленной внутрь, a М∙v/R есть величина этой силы». Чтобы тело могло двигаться по окружности, на него должна действовать сила, направленная к центру. Такая сила может осуществляться с помощью какого-либо реального внешнего воздействия — веревки, пружины или силы тяготения.


...

Пример А

Вращайте камень, привязанный к веревке (фиг. 107). Вы тянете за веревку, а веревка тянет камень к центру. Веревка буксирует камень и сообщает ему некоторое количество движения в новом направлении.

Представим себе, что веревка делает серию слабых рывков; рывок — и скорость изменила свое направление, еще рывок — снова изменение, еще, еще и так вдоль всей окружности. Если вы отпустите веревку, рывки прекратятся, прекратится и изменение скорости, а камень будет продолжать двигаться по касательной. (Сказать, что «камень улетает по касательной» — значит ввести в заблуждение).

57