Например, комета Ньютона, которую он наблюдал в 1680 г., а возвращения которой можно ожидать в 2255 г, могла быть той самой кометой, которая, по преданиям, возвестила о гибели Юлия Цезаря.
Фиг. 174. Схема Солнечной системы и комета Галлея.
В некоторых случаях комета испытывает сильное гравитационное возмущение, проходя вблизи больших планет, и переходит на новую орбиту с другим периодом. Вот почему мы знаем, что у комет масса невелика: планеты оказывают воздействие на их движение, а кометы не влияют на движение планет, хотя и действуют на них с такой же силой.
Если комета приходит из внешнего пространства с очень большой скоростью, она обходит Солнце и уходит в новом направлении, но движется не по эллипсу, а по гиперболе и в этом случае назад не возвращается.
Кометы движутся так быстро и приходят так редко, что еще до сих пор ученые ждут момента, когда можно будет применить современные средства к исследованию большой кометы. Считают, что кометы состоят из камней, пыли, газа и т. д., движущихся совокупно. Приближаясь к Солнцу, они все сильнее и сильнее отражают свет и кажутся все ярче и ярче. Когда комета проходит очень близко от Солнца, он может сильно нагреться и начать испускать собственное излучение. Излучение Солнца вызывает испарение вещества некоторых комет; рассеиваемый дополнительно на парах свет делает кометы более яркими и как бы увеличивает их объем. У многих комет образуется «хвост» из яркого вещества, который следует за кометой и изгибается, отклоняясь от ее орбиты в сторону от Солнца.
Фиг. 176. Комета, движущаяся по эллиптической орбите, в одном из фокусов которой находится Солнце, проходит через Солнечную систему.
Почему хвост не движется вместе в остальными частями кометы? Тело комет состоит из отдельных частиц, но тем не менее все они движутся по общей орбите, так как солнечное притяжение пропорционально массе (вспомните символический эксперимент). Хвост — исключение. Он не движется вместе с остальной массой кометы и даже отклоняется в сторону. Из этого можно заключить, что существует отталкивающая сила между Солнцем и кометой, причем эта сила действует на хвост сильнее, нежели на остальные части. Хвост скорее всего состоит из мельчайших частичек пыли, а может быть, только из газообразного вещества. Почему на маленькие частицы действуют относительно большие силы, чем на большие? Поверхностное натяжение, внутреннее трение жидкости и некоторые другие силы изменяются пропорционально поверхности частицы, тогда как гравитационные силы пропорциональны массе, а значит — объему. Наиболее вероятно, что «поверхностными силами», действующими на кометную пыль, являются давление света и поток ионов, испускаемый Солнцем. Уменьшение линейного размера частицы в 10 раз ведет к уменьшению ее массы в 1000 раз, а поверхность при этом становится меньше только в 100 раз, поэтому относительное значение поверхностных сил по сравнению с гравитационным притяжением массы становится в 10 раз больше. Вблизи Солнца его световое излучение очень велико, кроме того, оно испускает потоки протонов, и давление на небольшие частицы начинает играть важную роль. Вероятно, именно поэтому хвост кометы отталкивается от Солнца.
Фиг. 177. Силы, действующие на частицы хвоста кометы.
X. Сила тяжести внутри Земли
С помощью интегрального исчисления Ньютон показал, что пустая материальная оболочка сферической формы притягивает находящуюся вне ее массу так, как если бы вся масса оболочки была сосредоточена в центре сферы.
Представив себе, что Земля состоит из концентрических оболочек (даже различной плотности), Ньютон смог прийти к заключению, что и Земля притягивает другие тела так, как будто вся ее масса сосредоточена в ее центре. Ньютон также показал, что помещенное в такую оболочку тело не испытывает на себе действия сил. Этот результат не имеет большого значения для толкования земного тяготения, хотя и очень важен в теории электричества, ибо позволяет осуществить превосходную проверку закона обратных квадратов для электрических зарядов. Об этом будет сказано подробнее в гл. 33.
Эти два результата, полученные для сферической оболочки, дают интересную картину гравитационного поля однородного шара. Вне его поле спадает по «закону обратных квадратов»: g изменяется как 1/R, где R — расстояние от центра. Если поместить тело внутри шара, то оно окажется как бы внутри оболочки, притяжение которой на него не действует. Тело остается как бы на поверхности внутреннего шара. У него меньшая масса, но оно находится ближе к центру. В результате внутри шара g изменяется пропорционально R.
Фиг. 178. Определение величины g.
XI. Искусственные спутники
Ньютон указал, что любой снаряд является спутником Земли. Допустим, что из пушки, стоящей на вершине горы, горизонтально выпущен снаряд. Медленно летящий снаряд падает на Землю по параболе, фокус которой расположен близко к вершине. В действительности траектория снаряда представляет собой эллипс, второй фокус которого находится в центре Земли. Парабола и эллипс неразличимы на малом участке траектории, наблюдаемой, пока снаряд еще не упал (Чтобы получилась действительно парабола, нужна большая, плоская «Земля», а не шарообразная, с постоянным значением g.) Более быстрый снаряд полетит по эллипсу, но с малым эксцентриситетом. Можно придать снаряду такую скорость, что он будет вращаться вокруг Земли подобно Луне, обходя Землю по круговой орбите многократно (при условии, что стрелявший человек освободит дорогу «маленькой луне», после того как произведет выстрел). Такова картина движения искусственного спутника, полученная Ньютоном. Для спутника Земли и Луны будет справедлив третий закон Кеплера.