Физика для любознательных. Том 2. Наука о Земле и - Страница 81


К оглавлению

81

...

Задача 1. Первая проверка закона всемирного тяготения

Ньютон не указал, почему падают яблоки. Назвав причину возникновения веса тел словом «гравитация», происходящим от латинского и французского слов «тяжелый», он ничего не объяснил. Утверждение «Земля притягивает яблоко» связывает причину притяжения с Землей, а не с небом, но ничего не дает для понимания сущности гравитации. Между тем, столкнувшись с вопросом «Что удерживает Луну и планеты на их орбитах?». Ньютон смог предложить «объяснение» в том смысле, что одно и то же свойство природы обусловливает также движение планет по орбите и падение яблок. Поэтому «объяснение» означает только объединение этих явлений, объяснение их одной общей причиной. Но уже это весьма полезно для дальнейших выводов и для упрощения наших представлений о природе.

Изучая движение Луны, Ньютон вычислил ее ускорение v/R. Эта величина оказалась значительно меньше обычного значения g, равного 9,81 м/сек. Поэтому Луна должна была бы падать под действием силы тяжести, если бы земное притяжение не было значительно ослаблено расстоянием. Ньютон пытался рассмотреть простую форму зависимости ослабления притяжения — закон убывания силы тяжести обратно пропорционально квадрату расстояния. Он предположил, что с увеличением расстояния вдвое сила тяжести уменьшится в 4 раза, а если расстояние возрастет в 10 раз, то сила уменьшится в 100 раз и т. д.

Используя приведенные ниже данные, повторите вычисления Ньютона, определив (расчеты нужно вести с большой точностью):

а) ускорение Луны в м/сек, если принять a = v/R;

б) ожидаемое значение g на Луне в м/сек, считая, что «земное» значение g убывает по закону обратных квадратов. Нужно предположить, что Земля притягивает яблоко так, как если бы вся ее масса была бы сосредоточена в центре Земли, т. е. на расстоянии одного земного радиуса от яблока.

В связи с тем что ответ требуется дать в м/сек, величины расстояний нужно перевести в метры, а время в секунды, прежде чем подставлять данные в формулы. Впрочем, вы можете воспользоваться переходными коэффициентами и отложить перевод единиц, пока это не станет необходимым. Однако смешение километров, часов, метров, секунд может запутать вычисления.

Данные. Радиус Земли 6367 км.

Радиус лунной орбиты в 60,3 раза больше земного;

1 месяц = 27,3 дня (это абсолютный период обращения Луны по отношению к неподвижным звездам);

1 км = 1000 м; g яблока = 9,81 м/сек.


Задача 2. Третий закон Кеплера

Ньютон пришел к выводу о всеобщем характере закона, согласно которому сила притяжения между телами обратно пропорциональна квадрату расстояния. Мы выражаем этот закон в виде F = GMM/d. Из этого закона («принципа») он вывел (предсказал) свойства движения Луны, планетной системы, приливов и т. д.

Получите третий закон Кеплера, пользуясь приведенными ниже указаниями. Предположите, что Солнце, масса которого М, удерживает на круговой орбите планету массой m за счет гравитационного притяжения, причем радиус орбиты равен R. Предположите далее, что планета движется с заданной скоростью v, затрачивая время Т (планетный «год») на то, чтобы совершить один оборот.

а) Получите в алгебраической форме:

— ускорение планеты;

— силу, необходимую, чтобы придать планете ускорение;

— силу гравитационного притяжения, если она подчиняется закону тяготения Ньютона;

— скорость v планеты, выраженную через величины R и Т.

б) Доказательство

— напишите полученное Ньютоном алгебраическое уравнение, согласно которому искомая сила, необходимая, чтобы придать планете ускорение, равна гравитационному притяжению;

— исключите из итого уравнения v, пользуясь соотношением, выраженным через величины R и Т;

— перенесите величина, R и Т в левую часть уравнения, а все остальное в правую часть, получив таким путем новое уравнение;

— найдете ли вы R/T в левой части нового уравнения? (Если нет, проверьте свои выкладки.) Установили ли вы, что правая часть одинакова для всех планет, что она постоянна и не содержит m, R, Т?

— будет ли это новое уравнение справедливо с той же самой правой частью для других планет с разными массами, орбитами, периодами обращения, но с тем же Солнцем? Следует ли из соображений Ньютона третий закон Кеплера?


Задача 3. Второй закон Кеплера (Закон «равных площадей»)

а) Что утверждает этот закон? (Приведите чертеж.)

б) Ньютон показал, что этот закон должен выполняться для любого движения планет, если…(?)

в) Просмотрите геометрическое доказательство, сделанное Ньютоном, затем запишите ваш вариант доказательства и дайте рисунок. (Сделайте лучше несколько четких рисунков вместо одного, слишком подробного.)


Задача 4. Относительные массы планет

а) Используя законы движения Ньютона, a = v/R и закон всемирного тяготения F = GMM/d, покажите, как можно получить на основе астрономических измерений отношение (масса Юпитера)/(масса Солнца). Оцените конечный результат, не ссылайтесь на алгебраический результат.

б) Определите приближенно это отношение (см. данные ниже).

в) Сделайте аналогичные оценки отношения (масса Земли)/(масса Солнца).


г) — Из экспериментов, подобных опытам Кавендиша, можно оценить мaccу Земли. Ее величина около 6,6∙10 т. Вычислите приблизительно из приведенного выше отношения массу Солнца в тоннах.

81