Физика для любознательных. Том 2. Наука о Земле и - Страница 82


К оглавлению

82

Данные (некоторые из них могут не потребоваться).

Радиусы орбит планет (см. табл. в гл. 18).

Продолжительность «года» планет (см. табл. в гл. 18).

Данные о спутниках Юпитера (см. гл. 19). (Не пользуйтесь величинами радиусов орбит в единицах радиуса Юпитера, а используйте величины в милях. Времена даны в часах, преобразуйте их в единицы, которые вы использовали в других вычислениях.)

Данные о Земле:

Собственный радиус ~ 6300 км.

Время обращения вокруг оси 24 часа.

Радиус орбиты ~150 млн. км.

1 год ~= 365 дней ~= 3∙10 сек.

Данные о Луне:

Радиус орбиты ~ 60 земных радиусов.

Собственный радиус ~1600 км.

1 месяц = 27,3 дня. (Это абсолютный период обращения Луны по отношению к звездам.)


Задача 5. Искусственные спутники

а) Предположим, что спутник Земли описывает круговую орбиту на высоте 6300 км чад поверхностью Земли, так что он находится на расстоянии 12 600 км от, центра Земли. Используя свои знания о движении планет, оцените время, которое требуется спутнику на один оборот по орбите.

Дайте ответ без сокращений, приведенный к округленному числу, выраженному в часах, или минутах, или днях, или годах. (Используйте любые данные, полученные в предыдущих задачах. Величина G вам не потребуется.)

б) Инженеры телевидения предлагают запустить спутник, который мог бы ретранслировать коротковолновые передачи, обеспечивая Западное побережье программами из Нью-Йорка. Им хотелось бы, чтобы спутник стоял на месте, находясь, например, все время над Чикаго, не используя двигателей для поддержания заданного положения.

Опишите движение такого спутника, наблюдаемого с далекого расстояния от Земли.

Рассчитайте высоту, на которой такой спутник мог бы находиться, (Дайте ответ в буквенном выражении, а затем в километрах.)

в) Спутник совершает оборот вокруг Земли за 90 минут (относительно звезд).

Предполагая, что его орбита круговая, оцените, на какой высоте над Землей находится такой спутник.

г) Предположим, что снаряд выпущен из пушки горизонтально с такой скоростью, что он никогда не упадет на Землю, а будет вращаться над самой Землей.

Какое время потребуется, чтобы снаряд возвратился в исходную точку (сопротивлением воздуха пренебрегаем)?

Оцените скорость снаряда.

Скорость, которую требуется определить выше, равна скорости точки на экваторе, если бы Земля стала вращаться со скоростью…(?)

д) (Требуется быстрый ответ — время 15 сек, по нему можно судить о том, насколько вы усвоили прочитанное.) Какое время потребовалось бы спутнику Земли, чтобы обойти ее по круговой орбите радиусом 400 000 км?


Задача 6. Атомная модель Бора

Бор создал простейшую модель атома водорода с электроном, движущимся по круговой орбите вокруг тяжелого ядра, в которой справедлив закон обратных квадратов для электрических сил. (Эта картина атома ныне считается неверной, но она еще применяется для объяснений, и даже физики, когда им нужна грубая картина, используют эту модель для прикидок.) Квантовая теория, сформулированная Бором, устанавливала, что могут существовать только те круговые орбиты, для которых

(Импульс электрона)∙(Размер орбиты) = nh,

еде h — универсальная постоянная Планка, a n — целое число 1, 2, 3 и т. д.).

а) С помощью законов Кеплера и Ньютона покажите, что радиусы разрешенных орбит должны быть пропорциональны n, т. е. 1:4:9… (Так что если невозбужденный атом имеет радиус х, то атом в возбужденном состоянии будет иметь радиусы 4х, 9х и т. д)

б) Радиус атома водорода (n ~= 1) примерно равен 0,5 А° (0,5∙10 м). Возбужденные атомы водорода наблюдаются в звездах с n, равным 30. Каков «размер» такого атома?

Глава 23. Закон всемирного тяготения

«…Вы, без сомнения, должны быть удовлетворены…»

(Фраза из обращения судьи к присяжным заседателям на уголовных процессах.)


Идеи закона всемирного тяготения уже «витали в воздухе», когда Ньютон производил свои расчеты. Ряд ученых размышлял о том, что лежит в основе законов Кеплера. Делались попытки ответить на вопрос, можно ли объяснить движение планет притяжением Солнца, которое ослабевает по мере удаления от него. Ньютон извлек доказательство из моря домыслов и расширил предположение о силе притяжения Солнцем до понятия о всемирном тяготении. Он проверил свое предположение об обратной пропорциональности силы квадрату расстояния, рассмотрев движение Луны, и на основе этого пришел к законам Кеплера. Последующие проверки этой идеи на движении спутников Юпитера показали, что между планетами и их спутниками действуют силы того же типа, что и между Солнцем и планетами. Таким образом, на основе экспериментальных доказательств множитель 1/d в соотношении F = GMM/d был вполне обоснован для случая Солнечной системы.

Символический эксперимент Галилея (фиг. 182) определяет множитель М, т. е. массу притягиваемого тела. Так как ускорение свободного падения g одинаково для всех тел, Земля должна притягивать их с силой, пропорциональной их массам М, М'.



Фиг 182. Символический эксперимент Галилея.


Ньютон полагался на свой третий закон (действие равно противодействию), который он считал частично подтвержденным в опытах с маятником по проверке сохранения количества движения. Гравитационное воздействие М на М должно быть равно и противоположно гравитационному воздействию М на М, т. е. F= F. Поэтому G должно быть одинаковым для обеих сил:

82