Физика для любознательных. Том 2. Наука о Земле и - Страница 98


К оглавлению

98

Понаблюдайте сами за «броуновским движением». Посмотрите через сильный микроскоп на частицы сажи в воде. А еще проще, понаблюдайте в небольшой микроскоп за дымом. Наполните черный ящик дымом от сигареты или гаснущей спички и осветите его сбоку сильным светом. Дым рассеивает во всех направлениях голубовато-белый свет, часть которого попадает и в микроскоп. Под микроскопом дым представляется маленькими кусочками белого пепла, которые скачут туда и сюда в совершенно беспорядочном танце (см., например, фиг. 89, стр. 530).

Понаблюдав за частицами пепла, вы поймете, почему Броун сначала принял их за живые существа, но вы можете представить себе, что это движение возникает в результате хаотических ударов молекул воздуха. Сегодня мы не просто считаем, что так может быть, а уверены, что это именно так и есть, ибо способны вычислить действие этих ударов и проверить наши вычисления с помощью наблюдений. Если бы молекул воздуха было очень много и они были бы бесконечно малы, они бомбардировали бы большую частицу пепла симметрично со всех сторон и мы не смогли бы увидеть броуновского движения. Но, с другой стороны, если бы окружающий воздух состоял из небольшого числа больших молекул, то частицы пепла при ударе молекул совершали бы неожиданные дикие скачки. Ясно, что истина лежит где-то посредине: в сосуде имеется множество молекул, ударяющих частицу пепла со всех сторон много раз в секунду. За короткий промежуток времени в нее попадали с каждой стороны сотни молекул, но на одну сторону случайно приходится на несколько сот толчков больше, чей на другую, и частица заметно перемещается. Большие скачки редки, но несколько мелких перемещений в одном и том же направлении превращаются в наблюдаемый сдвиг. Детальные наблюдения и расчеты говорят о том, что под микроскопом мы наблюдаем именно эти результирующие сдвиги. Хотя отдельные перемещения слишком незначительны и мы их не можем разглядеть, все же можно оценить их скорость, записывая и анализируя большие отклонения.

Вы сами увидите, что частицы поменьше танцуют быстрее. А теперь мысленно вообразите, что частицы становятся все меньше и меньше. Какое движение вы увидите, если размеры частиц достигают размеров молекул при условии, конечно, что мы сможем разглядеть саму молекулу? Но можем ли мы увидеть молекулы?


...

Можно ли увидеть молекулы?

Действительно, можно ли' А это было бы очень полезно. Мы уверены, что то, что мы видим, существует на самом деле, хотя имеется множество оптических иллюзий. Все исследования молекул, проведенные на протяжении прошлого века, привели ученых к заключению, что увидеть молекулы — дело безнадежное. Не просто маловероятно, а именно невозможно, и по веским физическим причинам. Мы реагируем на свет, который представляет собой волны с очень малой длиной волны — всего лишь несколько тысяч ангстрем от гребня до гребня. Эти волны и создают видимое изображение Невооруженным глазом мы различаем форму булавочной головки с поперечником в 1 мм, или 1 0 000 000 А°;

— с помощью увеличительного стекла можем разглядеть волос толщиной 1 000 000 А°,

— с помощью слабого микроскопа видим частицы дыма размером 100 000 А°;

— с помощью сильного микроскопа видим бактерии размером от 10 000 до 1000 А°.

Но на этом ряд обрывается. Он должен оборваться — его ограничивает длина волны видимого света. Волны могут сделать видимыми препятствия, которые по своим размерам больше или порядка их длины. Например, океанские волны оставляют за островом ясно видимую тень спокойной воды. На меньшие препятствия они реагируют совсем по-другому. Встречая небольшое деревянное бревно, океанские волны не образуют за ним никакой тени. Они просто обтекают бревно и смыкаются за ним, как будто его и нет совсем. Слепой, бредущий по берегу штормового моря, может почувствовать присутствие близлежащего острова, но никогда не узнает о маленьком бревне, которое находится где-то тут же возле него.

Длины световых волн лежат в пределах от 7000 А° для красного света до 4000 А° — для фиолетового. Попытка проникнуть в область коротковолнового ультрафиолета путем применения фотопленки (вместо глаза), натолкнулась на препятствие — волны поглощались, еще будучи длиннее 1000 А°; линзы, образцы и даже сам воздух «непрозрачны» для такого ультрафиолета. Рентгеновские лучи с еще более короткими длинами волн способны проходить через вещество и создавать тени, но практически не фокусируются линзами. Хотя рентгеновские лучи и имеют малые длины волн и могли бы помочь проникнуть в более тонкие детали структуры, они дают лишь теневую картину. Таким образом, барьер, созданный волновой природой света, кажется непреодолимым. Мы можем увидеть бактерии размером до 1000 А°, а вот вирусам, имеющим в десять раз меньшие размеры, суждено остаться невидимыми. Увидеть же молекулы, которые меньше вирусов в десятки раз, совсем безнадежно. А между тем вирусы, вызывающие многие болезни, привлекают пристальное внимание медиков. Существует мнение, что вирусы находятся на границе между живыми организмами и химическими молекулами. Увидев молекулы, мы смогли бы ответить на многие важнейшие вопросы химии.

Невидимость молекул доставляла много неудобств, но казалась неизбежной. В начале этого века косвенную информацию о строении молекул удалось получить с помощью рентгеновских лучей. Упорядоченные структуры атомов и молекул в кристаллах могут рассеивать рентгеновские лучи регулярным образом, наподобие того, как «расщепляется» свет, проходящий через сотканный материал (посмотрите ночью на удаленный фонарь через тонкий носовой платок или зонтик).

98